Volume 98, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Defining spatial and temporal occurrences of triatomine vectors of , the agent of Chagas disease, in the US is critical for public health protection. Through a citizen science program and field collections from 2012 to 2016, we collected 3,215 triatomines, mainly from Texas. Using morphological and molecular approaches, we identified seven species and report sex, length, and blood engorgement status. Many citizen-collected triatomines (92.9%) were encountered indoors, in peridomestic settings, or in dog kennels and represent spillover transmission risk of to humans and domestic animals. The most commonly collected species were and . Adult were collected from May to September, peaking from June to July, whereas adult were active later, from June to October, peaking from July to September. Based on cross correlation analyses, peaks of captures varied by species and across years. Point pattern analyses revealed unique occurrences of in north and east Texas, in south and west Texas, and in central Texas, and in west Texas. These relatively unique spatial occurrences suggest associations with different suitable habitats and serve as a basis for future models evaluating the ecological niches of different vector species. Understanding the temporal and spatial heterogeneity of triatomines in the southern United States will improve targeted interventions of vector control and will guide public outreach and education to reduce human and animal contact with vectors and reduce the risk of exposure to .

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

Loading full text...

Full text loading...



  1. World Health Organization, 2015. Chagas disease in Latin America: an epidemiological update based on 2010 estimates. Wkly Epidemiol Rec 6: 3344.
  2. Bern C, Kjos S, Yabsley MJ, Montgomery SP, , 2011. Trypanosoma cruzi and Chagas’ disease in the United States. Clin Microbiol Rev 24: 655681.
  3. Lent H, Wygodzinsky P, , 1979. Revision of the Triatominae (Hemiptera, Reduviidae), and their significance as vectors of Chagas’ disease. Bull Am Mus Nat Hist 163: 123520.
  4. Kribs-Zaleta C, , 2010. Estimating contact process saturation in sylvatic transmission of Trypanosoma cruzi in the United States. PLoS Negl Trop Dis 4: e656.
  5. Wozniak EJ, Lawrence G, Gorchakov R, Alamgir H, Dotson E, Sissel B, Murray KO, , 2015. The biology of the triatomine bugs native to south central Texas and assessment of the risk they pose for autochthonous Chagas disease exposure. J Parasitol 101: 520528.
  6. Sjogren RD, Ryckman RE, , 1966. Epizootiology of Trypanosoma cruzi in southwestern North America. Part VIII: nocturnal flights of Triatoma protracta (Uhler) as indicated by collections at black light traps. J Med Entomol 3: 8192.
  7. Ekkens D, , 1981. Nocturnal flights of Triatoma (Hemiptera: Reduviidae) in Sabino Canyon, Arizona I. Light collections. J Med Entomol 18: 211227.
  8. Lehane MJ, Schofield CJ, , 1981. Field experiments of dispersive flight by Triatoma infestans. Trans R Soc Trop Med Hyg 75: 399400.
  9. Schweigmann N, Ghillini M, Vallvé S, Muscio O, Alberti A, Wisnivesky-Colli C, , 1988. Dispersal flight by Triatoma infestans in an arid area of Argentina. Med Vet Entomol 2: 401404.
  10. Reisenman CE, Savary W, Cowles J, Gregory TL, Hildebrand JG, , 2012. The distribution and abundance of Triatomine insects, potential vectors of Chagas disease, in a metropolitan area in southern Arizona, United States. J Med Entomol 49: 12541261.
  11. Pippin WF, , 1970. The biology and vector capability of Triatoma sanguisuga texana Usinger and Triatoma gerstaeckeri (Stål) compared with Rhodnius prolixus (Stål) (Hemiptera: Triatominae). J Med Entomol 7: 3045.
  12. Swanson DR, , 2011. New state records and distributional notes for some assassin bugs of the continental United States (Heteroptera: Reduviidae). Gt Lakes Entomol 44: 117138.
  13. Eisen L, Eisen RJ, , 2007. Need for improved methods to collect and present spatial epidemiologic data for vectorborne diseases. Emerg Infect Dis 13: 18161820.
  14. Kjos SA, Snowden KF, Olson JK, , 2009. Biogeography and Trypanosoma cruzi infection prevalence of Chagas disease vectors in Texas, USA. Vector Borne Zoonotic Dis 9: 4150.
  15. Sarkar S, Strutz SE, Frank DM, Rivaldi CL, Sissel B, Sánchez-Cordero V, , 2010. Chagas disease risk in Texas. PLoS Negl Trop Dis 4: e836.
  16. Garza M, Feria Arroyo TP, Casillas EA, Sanchez-Cordero V, Rivaldi C-L, Sarkar S, , 2014. Projected future distributions of vectors of Trypanosoma cruzi in North America under climate change scenarios. PLoS Negl Trop Dis 8: e2818.
  17. Curtis-Robles R, Wozniak EJ, Auckland LD, Hamer GL, Hamer SA, , 2015. Combining public health education and disease ecology research: using citizen science to assess Chagas disease entomological risk in Texas. PLoS Negl Trop Dis 9: e0004235.
  18. Ibarra-Cerdeña CN, Sánchez-Cordero V, Townsend Peterson A, Ramsey JM, , 2009. Ecology of North American Triatominae. Acta Trop 110: 178186.
  19. Ekkens D, , 1984. Nocturnal flights of Triatoma (Hemiptera: Reduviidae) in Sabino Canyon, Arizona II. Neotoma lodge studies. J Med Entomol 21: 140144.
  20. Kjos SA, Marcet PL, Yabsley MJ, Kitron U, Snowden KF, Logan KS, Barnes JC, Dotson EM, , 2013. Identification of bloodmeal sources and Trypanosoma cruzi infection in triatomine bugs (Hemiptera: Reduviidae) from residential settings in Texas, the United States. J Med Entomol 50: 11261139.
  21. Eads RB, Trevino HA, Campos EG, , 1963. Triatoma (Hemiptera: Reduviidae) infected with Trypanosoma cruzi in south Texas wood rat dens. Southwest Nat 8: 3842.
  22. McPhatter L, Roachell W, Mahmood F, Hoffman L, Lockwood N, Osuna A, Lopez J, Debboun M, , 2012. Vector surveillance to determine species composition and occurrence of Trypanosoma cruzi infection at three military installations in San Antonio, Texas. Army Med Dep J 7: 1221.
  23. Guerenstein PG, Lorenzo MG, Nuñez JA, Lazzari CR, , 1995. Baker’s yeast, an attractant for baiting traps for Chagas’ disease vectors. Experientia 51: 834837.
  24. Lorenzo MG, Manrique G, Pires HH, de Brito Sánchez MG, Diotaiuti L, Lazzari CR, , 1999. Yeast culture volatiles as attractants for Rhodnius prolixus: electroantennogram responses and captures in yeast-baited traps. Acta Trop 72: 119124.
  25. Graham CB, Black WC, Boegler KA, Montenieri JA, Holmes JL, Gage KL, Eisen RJ, , 2012. Combining real-time polymerase chain reaction using SYBR Green I detection and sequencing to identify vertebrate bloodmeals in fleas. J Med Entomol 49: 14421452.
  26. Montenegro S, , 1983. Determinación de las reservas alimenticias en Triatoma infestans (Klug, 1834) en base a carácteres externos. I. Adultos. PHYSIS (Buenos Aires) 41: 159167.
  27. Ceballos L, Vazquez-Prokopec G, Cecere M, Marcet P, Gürtler R, , 2005. Feeding rates, nutritional status and flight dispersal potential of peridomestic populations of Triatoma infestans in rural northwestern Argentina. Acta Trop 95: 149159.
  28. Pfeiler E, Bitler B, Ramsey J, Palacios-Cardiel C, Markow T, , 2006. Genetic variation, population structure, and phylogenetic relationships of Triatoma rubida and T. recurva (Hemiptera: Reduviidae: Triatominae) from the Sonoran Desert, insect vectors of the Chagas’ disease parasite Trypanosoma cruzi. Mol Phylogenet Evol 41: 209221.
  29. Kearse M, 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 16471649.
  30. Kumar S, Stecher G, Tamura K, , 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874.
  31. R Development Core Team, 2008. R: a language and environment for statistical computing. Available at: https://www.r-project.org. Accessed June 21, 2016.
  32. Kelsall JE, Diggle PJ, , 1995. Kernel estimation of relative risk. Bernoulli 1: 316.
  33. Mabud TS, Barbarin AM, Barbu CM, Levy KH, Edinger J, Levy MZ, , 2014. Spatial and temporal patterns in Cimex lectularius (Hemiptera: Cimicidae) reporting in Philadelphia, PA. J Med Entomol 51: 5054.
  34. Wood SF, Wood FD, , 1964. Nocturnal aggregation and invasion of homes in southern California by insect vectors of Chagas’ disease. J Econ Entomol 57: 775776.
  35. Sullivan TD, McGregor T, Eads RB, Davis DJ, , 1949. Incidence of Trypanosoma cruzi, Chagas, in Triatoma (Hemiptera, Reduviidae) in Texas. Am J Trop Med Hyg 29: 453458.
  36. Buhaya M, Galvan S, Maldonado R, , 2015. Incidence of Trypanosoma cruzi infection in triatomines collected at Indio Mountains Research Station. Acta Trop 150: 9799.
  37. Miles M, Llewellyn M, Lewis M, Yeo M, Baleela R, Fitzpatrick S, Gaunt M, Mauricio I, , 2009. The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology 136: 15091528.
  38. Ryckman RE, , 1984. The Triatominae of North and Central America and the West Indies: a checklist with synonymy (Hemiptera: Reduviidae: Triatominae). Bull Soc Vector Ecol 9: 7182.
  39. Ryckman RE, , 1981. The kissing bug problem in western North America. Bull Soc Vector Ecol 6: 167169.
  40. Martínez-Ibarra JA, Galavíz-Silva L, Campos C, Trujillo-García C, , 1992. Distribución de los triatominos asociados al domicilio humano en el municipio de General Terán, Nuevo Leon, Mexico. Southwest Entomol 17: 261265.
  41. Reisenman CE, Gregory T, Guerenstein PG, Hildebrand JG, , 2011. Feeding and defecation behavior of Triatoma rubida (Uhler, 1894) (Hemiptera: Reduviidae) under laboratory conditions, and its potential role as a vector of Chagas disease in Arizona, USA. Am J Trop Med Hyg 85: 648656.
  42. Martínez-Ibarra JA, Paredes-González E, Licón-Trillo Á, Montañez-Valdez OD, Rocha-Chávez G, Nogueda-Torres B, , 2012. The biology of three Mexican-American species of Triatominae (Hemiptera: Reduviidae): Triatoma recurva, Triatoma protracta and Triatoma rubida. Mem Inst Oswaldo Cruz 107: 659663.
  43. Schofield CJ, Lehane MJ, McEwen PK, Catala SS, Gorla DE, , 1992. Dispersive flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol 6: 5156.
  44. Vazquez-Prokopec GM, Ceballos LA, Kitron U, Gürtler RE, , 2004. Active dispersal of natural populations of Triatoma infestans (Hemiptera: Reduviidae) in rural northwestern Argentina. J Med Entomol 41: 614621.
  45. Gurevitz JM, Ceballos LA, Kitron UD, Gürtler RE, , 2006. Flight initiation of Triatoma infestans (Hemiptera: Reduviidae) under natural climatic conditions. J Med Entomol 43: 143150.
  46. Castro LA, Peterson JK, Saldaña A, Perea MY, Calzada JE, Pineda V, Dobson AP, Gottdenker NL, , 2014. Flight behavior and performance of Rhodnius pallescens (Hemiptera: Reduviidae) on a tethered flight mill. J Med Entomol 51: 10101018.
  47. Cesa AK, Caillouët KA, Dorn PL, Wesson DM, , 2011. High Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) prevalence in Triatoma sanguisuga (Hemiptera: Reduviidae) in southeastern Louisiana. J Med Entomol 48: 10911094.
  48. Paredes-Gonzalez E, Villa Velarde R, Sotelo Estrada MI, Ortega-García J, , 2015. Detección de triatominos (Hemiptera: Reduviidae) domésticos, peridomésticos y silvestres en Guaymas, Sonora, México. Biotecnia 17: 38.
  49. Curtis-Robles R, Snowden KF, Dominguez B, Dinges L, Rodgers S, Mays G, Hamer SA, , 2017. Epidemiology and molecular typing of Trypanosoma cruzi in naturally-infected hound dogs and associated triatomine vectors in Texas, USA. PLoS Negl Trop Dis 11: e0005298.
  50. Gürtler RE, Cardinal MV, , 2015. Reservoir host competence and the role of domestic and commensal hosts in the transmission of Trypanosoma cruzi. Acta Trop 151: 3250.
  51. The National Drought Mitigation Center, June 7, 2011 map. Available at: http://droughtmonitor.unl.edu/data/jpg/20110607/20110607_tx_trd.jpg. Accessed June 9, 2017.
  52. The National Drought Mitigation Center, June 7, 2016 map. Available at: http://droughtmonitor.unl.edu/data/jpg/20160607/20160607_tx_trd.jpg. Accessed June 9, 2017.
  53. Karki S, Hamer GL, Anderson TK, Goldberg TL, Kitron UD, Krebs BL, Walker ED, Ruiz MO, , 2016. Effect of trapping methods, weather, and landscape on estimates of the Culex vector mosquito abundance. Environ Health Insights 10: 93103.
  54. Shand L, Brown WM, Chaves LF, Goldberg TL, Hamer GL, Haramis L, Kitron U, Walker ED, Ruiz MO, , 2016. Predicting West Nile virus infection risk from the synergistic effects of rainfall and temperature. J Med Entomol 53: 935944.
  55. Usinger RL, , 1944. The Triatominae of North and Central America and the West Indies and their public health significance. US Public Heal Serv Public Heal Bull 288: 181.
  56. de la Rua N, Stevens L, Dorn PL, , 2011. High genetic diversity in a single population of Triatoma sanguisuga (LeConte, 1855) inferred from two mitochondrial markers: Cytochrome b and 16S ribosomal DNA. Infect Genet Evol 11: 671677.

Data & Media loading...

Supplementary Data

Supplemental Figure and Table

  • Received : 30 Jun 2017
  • Accepted : 25 Sep 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error