1921
Volume 99, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

In the Peruvian North Coast (PNC), the number of malaria cases increased steadily from 2007 to 2010 despite a significant decline in the overall number of cases in Peru during the same period. To better understand the transmission dynamics of populations in the PNC and the neighboring Ecuadorian Amazon Basin (EAB), we studied the genetic variability and population structure of in these areas. One hundred and twenty isolates (58 from Piura and 37 from Tumbes in the PNC collected from 2008 to 2010 and 25 from the EAB collected in Pastaza from 2001 to 2004) were assessed by five polymorphic microsatellite markers. Genetic variability was determined by expected heterozygosity () and population structure by Bayesian inference cluster analysis. We found very low genetic diversity in the PNC ( = 0–0.32) but high genetic diversity in the EAB ( = 0.43–0.70). Population structure analysis revealed three distinct populations in the three locations. Six of 37 (16%) isolates from Tumbes had an identical haplotype to that found in Piura, suggesting unidirectional flow from Piura to Tumbes. In addition, one haplotype from Tumbes showed similarity to a haplotype found in Pastaza, suggesting that this could be an imported case from EAB. These findings strongly suggest a minimal population flow and different levels of genetic variability between these two areas divided by the Andes Mountains. This work presents molecular markers that could be used to increase our understanding of regional malaria transmission dynamics, which has implications for the development of strategies for control.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0498
2018-05-14
2019-05-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/99/1/tpmd170498.html?itemId=/content/journals/10.4269/ajtmh.17-0498&mimeType=html&fmt=ahah

References

  1. Mendis K, Sina BJ, Marchesini P, Carter R, , 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64: 97106. [Google Scholar]
  2. Guerra CA, Snow RW, Hay SI, , 2006. Mapping the global extent of malaria in 2005. Trends Parasitol 22: 353358. [Google Scholar]
  3. Rosas-Aguirre A, 2016. Epidemiology of Plasmodium vivax malaria in Peru. Am J Trop Med Hyg 95: 133144. [Google Scholar]
  4. Saenz FE, 2017. Malaria epidemiology in low-endemicity areas of the northern coast of Ecuador: high prevalence of asymptomatic infections. Malar J 16: 300. [Google Scholar]
  5. Krisher LK, 2016. Successful malaria elimination in the Ecuador-Peru border region: epidemiology and lessons learned. Malar J 15: 573. [Google Scholar]
  6. Carlton J, , 2003. The Plasmodium vivax genome sequencing project. Trends Parasitol 19: 227231. [Google Scholar]
  7. Carlton JM, 2008. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 455: 757763. [Google Scholar]
  8. Russell B, Suwanarusk R, Lek-Uthai U, , 2006. Plasmodium vivax genetic diversity: microsatellite length matters. Trends Parasitol 22: 399401. [Google Scholar]
  9. Chenet SM, Schneider KA, Villegas L, Escalante AA, , 2012. Local population structure of Plasmodium: impact on malaria control and elimination. Malar J 11: 412. [Google Scholar]
  10. Van den Eede P, 2010. Multilocus genotyping reveals high heterogeneity and strong local population structure of the Plasmodium vivax population in the Peruvian Amazon. Malar J 9: 151. [Google Scholar]
  11. Ferreira MU, Karunaweera ND, da Silva-Nunes M, da Silva NS, Wirth DF, Hartl DL, , 2007. Population structure and transmission dynamics of Plasmodium vivax in rural Amazonia. J Infect Dis 195: 12181226. [Google Scholar]
  12. Rezende AM, Tarazona-Santos E, Couto AD, Fontes CJ, De Souza JM, Carvalho LH, Brito CF, , 2009. Analysis of genetic variability of Plasmodium vivax isolates from different Brazilian Amazon areas using tandem repeats. Am J Trop Med Hyg 80: 729733. [Google Scholar]
  13. Imwong M, 2007. Contrasting genetic structure in Plasmodium vivax populations from Asia and South America. Int J Parasitol 37: 10131022. [Google Scholar]
  14. Schousboe ML, 2014. Global and local genetic diversity at two microsatellite loci in Plasmodium vivax parasites from Asia, Africa and South America. Malar J 13: 392. [Google Scholar]
  15. Menegon M, 2016. Microsatellite genotyping of Plasmodium vivax isolates from pregnant women in four malaria endemic countries. PLoS One 11: e0152447. [Google Scholar]
  16. Delgado-Ratto C, 2014. Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon. Malar J 13: 8. [Google Scholar]
  17. Delgado-Ratto C, 2016. Population genetics of Plasmodium vivax in the Peruvian Amazon. PLoS Negl Trop Dis 10: e0004376. [Google Scholar]
  18. Griffing SM, 2011. South American Plasmodium falciparum after the malaria eradication era: clonal population expansion and survival of the fittest hybrids. PLoS One 6: e23486. [Google Scholar]
  19. Manock SR, 2009. Etiology of acute undifferentiated febrile illness in the Amazon basin of Ecuador. Am J Trop Med Hyg 81: 146151. [Google Scholar]
  20. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, , 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61: 315320. [Google Scholar]
  21. Imwong M, Sudimack D, Pukrittayakamee S, Osorio L, Carlton JM, Day NP, White NJ, Anderson TJ, , 2006. Microsatellite variation, repeat array length, and population history of Plasmodium vivax. Mol Biol Evol 23: 10161018. [Google Scholar]
  22. Pacheco MA, Lopez-Perez M, Vallejo AF, Herrera S, Arevalo-Herrera M, Escalante AA, , 2016. Multiplicity of infection and disease severity in Plasmodium vivax. PLoS Negl Trop Dis 10: e0004355. [Google Scholar]
  23. Excoffier L, Laval G, Schneider S, , 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1: 4750. [Google Scholar]
  24. Pritchard JK, Stephens M, Donnelly P, , 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959. [Google Scholar]
  25. Evanno G, Regnaut S, Goudet J, , 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620. [Google Scholar]
  26. Beerli P, , 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22: 341345. [Google Scholar]
  27. Beerli P, Palczewski M, , 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185: 313326. [Google Scholar]
  28. Rezende AM, Tarazona-Santos E, Fontes CJ, Souza JM, Couto AD, Carvalho LH, Brito CF, , 2010. Microsatellite loci: determining the genetic variability of Plasmodium vivax. Trop Med Int Health 15: 718726. [Google Scholar]
  29. Aramburu Guarda J, Ramal Asayag C, Witzig R, , 1999. Malaria reemergence in the Peruvian Amazon region. Emerg Infect Dis 5: 209215. [Google Scholar]
  30. Need JT, Rogers EJ, Phillips IA, Falcon R, Fernandez R, Carbajal F, Quintana J, , 1993. Mosquitoes (Diptera: Culicidae) captured in the Iquitos area of Peru. J Med Entomol 30: 634638. [Google Scholar]
  31. Reinbold-Wasson DD, Sardelis MR, Jones JW, Watts DM, Fernandez R, Carbajal F, Pecor JE, Calampa C, Klein TA, Turell MJ, , 2012. Determinants of Anopheles seasonal distribution patterns across a forest to periurban gradient near Iquitos, Peru. Am J Trop Med Hyg 86: 459463. [Google Scholar]
  32. Li J, Collins WE, Wirtz RA, Rathore D, Lal A, McCutchan TF, , 2001. Geographic subdivision of the range of the malaria parasite Plasmodium vivax. Emerg Infect Dis 7: 3542. [Google Scholar]
  33. Joy DA, Gonzalez-Ceron L, Carlton JM, Gueye A, Fay M, McCutchan TF, Su XZ, , 2008. Local adaptation and vector-mediated population structure in Plasmodium vivax malaria. Mol Biol Evol 25: 12451252. [Google Scholar]
  34. Abdullah NR, 2013. Plasmodium vivax population structure and transmission dynamics in Sabah Malaysia. PLoS One 8: e82553. [Google Scholar]
  35. Barry AE, Waltmann A, Koepfli C, Barnadas C, Mueller I, , 2015. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog Glob Health 109: 142152. [Google Scholar]
  36. Koepfli C, 2015. Plasmodium vivax diversity and population structure across four continents. PLoS Negl Trop Dis 9: e0003872. [Google Scholar]
  37. Sutton PL, , 2013. A call to arms: on refining Plasmodium vivax microsatellite marker panels for comparing global diversity. Malar J 12: 447. [Google Scholar]
  38. Alexandre MA, Ferreira CO, Siqueira AM, Magalhaes BL, Mourao MP, Lacerda MV, Alecrim M, , 2010. Severe Plasmodium vivax malaria, Brazilian Amazon. Emerg Infect Dis 16: 16111614. [Google Scholar]
  39. Joshi H, Prajapati SK, Verma A, Kang’a S, Carlton JM, , 2008. Plasmodium vivax in India. Trends Parasitol 24: 228235. [Google Scholar]
  40. Reid H, Vallely A, Taleo G, Tatem AJ, Kelly G, Riley I, Harris I, Henri I, Iamaher S, Clements AC, , 2010. Baseline spatial distribution of malaria prior to an elimination programme in Vanuatu. Malar J 9: 150. [Google Scholar]
  41. Van den Eede P, Erhart A, Van der Auwera G, Van Overmeir C, Thang ND, Hung le X, Anne J, D’Alessandro U, , 2010. High complexity of Plasmodium vivax infections in symptomatic patients from a rural community in central Vietnam detected by microsatellite genotyping. Am J Trop Med Hyg 82: 223227. [Google Scholar]
  42. Gray KA, Dowd S, Bain L, Bobogare A, Wini L, Shanks GD, Cheng Q, , 2013. Population genetics of Plasmodium falciparum and Plasmodium vivax and asymptomatic malaria in Temotu Province, Solomon Islands. Malar J 12: 429. [Google Scholar]
  43. Liu Y, 2014. Genetic diversity and population structure of Plasmodium vivax in central China. Malar J 13: 262. [Google Scholar]
  44. Hong NV, 2016. Population genetics of Plasmodium vivax in four rural communities in central Vietnam. PLoS Negl Trop Dis 10: e0004434. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0498
Loading
/content/journals/10.4269/ajtmh.17-0498
Loading

Data & Media loading...

  • Received : 22 Jun 2017
  • Accepted : 22 Jan 2018
  • Published online : 14 May 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error