Volume 98, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Melioidosis, a potentially fatal tropical infection, is said to be underdiagnosed in low-income countries. An increase in melioidosis cases in Sri Lanka allowed us to analyze the relationship among clinical outcome, bacteriology, epidemiology, and geography in the first 108 laboratory-confirmed cases of melioidosis from a nationwide surveillance program. The additional 76 cases of laboratory-confirmed melioidosis confirmed further associations between multilocus sequence typing (MLST) and infection phenotype; ST1137/unifocal bacteremic infection (χ = 3.86, < 0.05), ST1136/multifocal infection without bacteremia (χ = 15.8, < 0.001), and ST1132/unifocal nonbacteremic infection (χ = 6.34, = 0.02). ST1137 infections were predominantly seen in the Western Province, whereas ST1132, 1135, and 1136 infections predominated in the Northwestern Province. Early participating centers in the surveillance program had a lower melioidosis-associated mortality than later participants (χ = 3.99, < 0.05). The based upon related sequence types (eBURST) algorithm, a MLST clustering method that infers founding genotypes and patterns of descent for related isolates and clonal complexes in an unrooted tree, showed uneven distribution of sequence types (STs). There was spatial clustering of the commonest STs (ST1132, 1136, and 1137) in the Western, Northwestern, and Central provinces. The recent increase in melioidosis in Sri Lanka uncovered by laboratory-enhanced surveillance is likely to be the result of a combination of improved laboratory detection, increased clinician awareness, recruitment of clinical centers, and small outbreaks. Further development of the surveillance program into a national genotyping-supported melioidosis registry will improve melioidosis diagnosis, treatment, and prevention where underdiagnosis and mortality rates remain high.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Inglis TJ, Sousa AQ, , 2009. The public health implications of melioidosis. Braz J Infect Dis 13: 5966. [Google Scholar]
  2. Currie BJ, Kaestli M, , 2016. Epidemiology: a global picture of melioidosis. Nature 529: 290291. [Google Scholar]
  3. Benoit TJ, Blaney DD, Doker TJ, Gee JE, Elrod MG, Rolim DB, Inglis TJ, Hoffmaster AR, Bower WA, Walke HT, , 2015. A review of melioidosis cases in the Americas. Am J Trop Med Hyg 93: 11341139. [Google Scholar]
  4. Inglis TJ, Merritt A, Montgomery J, Jayasinghe I, Thevanesam V, McInnes R, , 2008. Deployable laboratory response to emergence of melioidosis in central Sri Lanka. J Clin Microbiol 46: 34793481. [Google Scholar]
  5. Dance DA, , 1991. Melioidosis: the tip of the iceberg? Clin Microbiol Rev 4: 5260. [Google Scholar]
  6. Inglis TJ, Rolim DB, Rodriguez JL, , 2006. Clinical guideline for diagnosis and management of melioidosis. Rev Inst Med Trop São Paulo 48: 14. [Google Scholar]
  7. Meumann EM, Cheng AC, Ward L, Currie BJ, , 2012. Clinical features and epidemiology of melioidosis pneumonia: results from a 21-year study and review of the literature. Clin Infect Dis 54: 362369. [Google Scholar]
  8. Cheng AC, Currie BJ, Dance DA, Funnell SG, Limmathurotsakul D, Simpson AJ, Peacock SJ, , 2013. Clinical definitions of melioidosis. Am J Trop Med Hyg 88: 411413. [Google Scholar]
  9. Kingsley PV, Arunkumar G, Tipre M, Leader M, Sathiakumar N, , 2016. Pitfalls and optimal approaches to diagnose melioidosis. Asian Pac J Trop Med 9: 515524. [Google Scholar]
  10. Corea EM, Merritt AJ, Ler YH, Thevanesam V, Inglis TJ, , 2016. Sri Lankan national melioidosis surveillance program uncovers a nationwide distribution of invasive melioidosis. Am J Trop Med Hyg 94: 292298. [Google Scholar]
  11. Merritt A, Inglis TJ, Chidlow G, Harnett G, , 2006. PCR-based identification of Burkholderia pseudomallei. Rev Inst Med Trop São Paulo 48: 239244. [Google Scholar]
  12. Tuanyok A, 2007. A horizontal gene transfer event defines two distinct groups within Burkholderia pseudomallei that have dissimilar geographic distributions. J Bacteriol 189: 90449049. [Google Scholar]
  13. Godoy D, Randle G, Simpson AJ, Aanensen DM, Pitt TL, Kinoshita R, Spratt BG, , 2003. Multilocus sequence typing and evolutionary relationships among the causative agents of melioidosis and glanders, Burkholderia pseudomallei and Burkholderia mallei. J Clin Microbiol 41: 20682079. [Google Scholar]
  14. McCombie RL, Finkelstein RA, Woods DE, , 2006. Multilocus sequence typing of historical Burkholderia pseudomallei isolates collected in southeast Asia from 1964 to 1967 provides insight into the epidemiology of melioidosis. J Clin Microbiol 44: 29512962. [Google Scholar]
  15. Kearse M, 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 16471649. [Google Scholar]
  16. Francisco AP, Bugalho M, Ramirez M, Carriço JA, , 2009. Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics 10: 152. [Google Scholar]
  17. Francisco AP, Vaz C, Monteiro PT, Melo-Cristino J, Ramirez M, Carriço JA, , 2012. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods. BMC Bioinformatics 13: 87. [Google Scholar]
  18. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG, , 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186: 15181530. [Google Scholar]
  19. Darriba D, Taboada GL, Doallo R, Posada D, , 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9: 772. [Google Scholar]
  20. Guindon S, Gascuel O, , 2003. A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52: 696704. [Google Scholar]
  21. Schwarz G, , 1978. Estimating the dimension of a model. Ann Stat 6: 461464. [Google Scholar]
  22. Kumar S, Stecher G, Tamura K, , 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33: 18701874. [Google Scholar]
  23. Tamura K, Nei M, , 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512526. [Google Scholar]
  24. Librado P, Rozas J, , 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 14511452. [Google Scholar]
  25. Inglis TJ, , 2007. Principia aetiologica: taking causality beyond Koch’s postulates. J Med Microbiol 56: 14191422. [Google Scholar]
  26. Parks DH, Mankowski T, Zangooei S, Porter MS, Armanini DG, Baird DJ, Langille MG, Beiko RG, , 2013. GenGIS 2: geospatial analysis of traditional and genetic biodiversity, with new gradient algorithms and an extensible plugin framework. PLoS One 8: e69885. [Google Scholar]
  27. R Development Core Team, 2008. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria: R Development Core Team. Available at: http://www.R-project.org/. Accessed December 23, 2016.
  28. Norton R, Roberts B, Freeman M, Wilson M, Ashhurst-Smith C, Lock W, Brookes D, La Brooy J, , 1998. Characterisation and molecular typing of Burkholderia pseudomallei: are disease presentations of melioidosis clonally related? FEMS Immunol Med Microbiol 20: 3744. [Google Scholar]
  29. Deuble M, Aquilina C, Norton R, , 2013. Neurologic melioidosis. Am J Trop Med Hyg 89: 535539. [Google Scholar]
  30. Stephens DP, Thomas JH, Ward LM, Currie BJ, , 2016. Melioidosis causing critical illness: a review of 24 years of experience from the Royal Darwin Hospital ICU. Crit Care Med 44: 15001505. [Google Scholar]
  31. Morse LP, Moller CC, Harvey E, Ward L, Cheng AC, Carson PJ, Currie BJ, , 2009. Prostatic abscess due to Burkholderia pseudomallei: 81 cases from a 19-year prospective melioidosis study. J Urol 182: 542547, discussion 547. [Google Scholar]
  32. Singer M, 2016. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315: 801810. [Google Scholar]
  33. How SH, 2009. Pahang melioidosis registry. Med J Malaysia 64: 2730. [Google Scholar]
  34. Tellapragada C, Kamthan A, Shaw T, Ke V, Kumar S, Bhat V, Mukhopadhyay C, , 2016. Unravelling the molecular epidemiology and genetic diversity among Burkholderia pseudomallei isolates from south India using multi-locus sequence typing. PLoS One 11: e0168331. [Google Scholar]
  35. De Smet B, 2015. Whole-genome sequencing confirms that Burkholderia pseudomallei multilocus sequence types common to both Cambodia and Australia are due to homoplasy. J Clin Microbiol 53: 323326. [Google Scholar]

Data & Media loading...

Supplemental Figure and Table

  • Received : 06 Jun 2017
  • Accepted : 31 Oct 2017
  • Published online : 08 Jan 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error