Volume 98, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Dengue transmission in Mexico has become a major public health problem. Few epidemiological studies have examined the seroprevalence of dengue in Mexico, and recent estimates are needed to better understand dengue transmission dynamics. We conducted a dengue seroprevalence survey among 1,668 individuals including all age groups in three urban settings in Yucatan, Mexico. Children (< 19 years old) were selected randomly from schools. The adults (≥ 19 years old) were selected from healthcare facilities. Participants were asked to provide a venous blood sample and to answer a brief questionnaire with demographic information. Previous exposure to dengue was determined using indirect immunoglobulin G enzyme-linked immunosorbent assay. The overall seroprevalence was 73.6%. The age-specific seroprevalence increased with age, going from 51.4% (95% confidence interval [CI] = 45.0–57.9%) in children ≤ 8 years to 72% (95% CI = 66.3–77.2%) in the 9- to 14-years old. The highest seroprevalence was 83.4% (95% CI = 77–82.2%) in adults greater than 50 years. The seroprevalence in Merida was 68.6% (95% CI = 65–72%), in Progreso 68.7% (95% CI = 64.2–72.8%), and in Ticul 85.3% (95% CI = 81.9–88.3%). Ticul had the highest seroprevalence in all age groups. Logistic regression analysis showed that age and city of residence were associated with greater risk of prior dengue exposure. The results highlight the level of past exposure to dengue virus including young children. Similar studies should be conducted elsewhere in Mexico and other endemic countries to better understand the transmission dynamics of dengue.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Bhatt S, 2013. The global distribution and burden of dengue. Nature 496: 504507. [Google Scholar]
  2. Pan American Health Organization, 2017. Dengue: Informe Anual de Casos de Dengue. Available at: http://www.paho.org/hq/index.php?option=com_topics&view=rdmore&cid=6291&Itemid=40734&lang=en. Accessed January 1, 2017.
  3. San Martín JL, Brathwaite O, Zambrano B, Solórzano JO, Bouckenooghe A, Dayan GH, Guzmán MG, , 2010. The epidemiology of dengue in the Americas over the last three decades: a worrisome reality. Am J Trop Med Hyg 82: 128135. [Google Scholar]
  4. Cafferata ML, Bardach A, Rey-Ares L, Alcaraz A, Cormick G, Gibbons L, Romano M, Cesaroni S, Ruvinsky S, , 2013. Dengue epidemiology and burden of disease in Latin America and the Caribbean: a systematic review of the literature and meta-analysis. Value Health Reg Issues 2: 347356. [Google Scholar]
  5. Beatty ME, Letson GW, Margolis HS, , 2009. Estimating the global burden of dengue. Am J Trop Med Hyg 81 (Suppl 1): 231. Available at: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=emed9&NEWS=N&AN=70337208. [Google Scholar]
  6. Endy TP, Anderson KB, Nisalak A, Yoon IK, Green S, Rothman AL, Thomas SJ, Jarman RG, Libraty DH, Gibbons RV, , 2011. Determinants of inapparent and symptomatic dengue infection in a prospective study of primary school children in Kamphaeng Phet, Thailand. PLoS Negl Trop Dis 5: e975. [Google Scholar]
  7. Yoon IK, 2012. Underrecognized mildly symptomatic viremic dengue virus infections in rural thai schools and villages. J Infect Dis 206: 389398. [Google Scholar]
  8. Gómez-Dantés H, Willoquet JR, , 2009. Dengue in the Americas: challenges for prevention and control. Cad Saude Publica 25 (Suppl 1): S19S31. [Google Scholar]
  9. Hladish TJ, Pearson CAB, Chao DL, Rojas DP, Recchia GL, Gomez-Dantes H, Halloran ME, Pulliam JRC, Longini IM, , 2016. Projected impact of dengue vaccination in Yucatan, Mexico. PLoS Negl Trop Dis 10: e0004661. [Google Scholar]
  10. Chao DL, Halstead SB, Halloran ME, Longini IM, , 2012. Controlling dengue with vaccines in Thailand. PLoS Negl Trop Dis 6: e1876. [Google Scholar]
  11. Ferguson NM, Donnelly CA, Anderson RM, , 1999. Transmission dynamics and epidemiology of dengue: insights from age-stratified sero-prevalence surveys. Philos Trans R Soc B Biol Sci 354: 757768. [Google Scholar]
  12. Rodriguez-Barraquer I, Cordeiro MT, Braga C, de Souza WV, Marques ET, Cummings DAT, , 2011. From re-emergence to hyperendemicity: the natural history of the dengue epidemic in Brazil. PLoS Negl Trop Dis 5: e935. [Google Scholar]
  13. Brunkard JM, López JLR, Ramirez J, Cifuentes E, Rothenberg SJ, Hunsperger EA, Moore CG, Brussolo RM, Villarreal NA, Haddad BM, , 2007. Dengue fever seroprevalence and risk factors, Texas-Mexico border, 2004. Emerg Infect Dis 13: 14771483. [Google Scholar]
  14. Díaz FJ, Black WC, IV Farfán-Ale JA, Loroño-Pino MA, Olson KE, Beaty BJ, , 2006. Dengue virus circulation and evolution in Mexico: a phylogenetic perspective. Arch Med Res 37: 760773. [Google Scholar]
  15. Duong V, 2015. Asymptomatic humans transmit dengue virus to mosquitoes. Proc Natl Acad Sci USA 112: 1468814693. [Google Scholar]
  16. Ruberto I, Marques E, Burke DS, Van Panhuis WG, , 2015. The availability and consistency of dengue surveillance data provided online by the World Health Organization. PLoS Negl Trop Dis 9: e0003511. [Google Scholar]
  17. Dircio Montes Sergio A, González Figueroa E, María Saadia VG, Elizabeth SH, Beatriz RS, Altuzar Aguilar Víctor M, Navarrete Espinosa J, , 2012. Leptospirosis prevalence in patients with initial diagnosis of dengue. J Trop Med 2012: 519701. [Google Scholar]
  18. Zavala-Velazquez JE, Ruiz-Sosa J, Vado-Solis I, Billings AN, Walker DH, , 1999. Serologic study of the prevalence of rickettsiosis in Yucatan: evidence for a prevalent spotted fever group rickettsiosis. Am J Trop Med Hyg 61: 405408. [Google Scholar]
  19. Rodríguez-Barraquer I, Solomon SS, Kuganantham P, Srikrishnan AK, Vasudevan CK, Iqbal SH, Balakrishnan P, Solomon S, Mehta SH, Cummings DAT, , 2015. The hidden burden of dengue and chikungunya in Chennai, India. PLoS Negl Trop Dis 9: e0003906. [Google Scholar]
  20. Rojas DP, 2016. The epidemiology and transmissibility of Zika virus in Girardot and San Andres Island, Colombia, September 2015 to January 2016. Euro Surveill 21: pii: 30283. [Google Scholar]
  21. Yozwiak NL, Skewes-Cox P, Stenglein MD, Balmaseda A, Harris E, DeRisi JL, , 2012. Virus identification in unknown tropical febrile illness cases using deep sequencing. PLoS Negl Trop Dis 6: e1485. [Google Scholar]
  22. Balmaseda A, 2006. High seroprevalence of antibodies against dengue virus in a prospective study of schoolchildren in Managua, Nicaragua. Trop Med Int Health 11: 935942. [Google Scholar]
  23. Dantés HG, Farfán-Ale JA, Sarti E, , 2014. Epidemiological trends of dengue disease in Mexico (2000–2011): a systematic literature search and analysis. PLoS Negl Trop Dis 8: e3158. [Google Scholar]
  24. Schwartz LM, Halloran ME, Durbin AP, Longini IM, , 2015. The dengue vaccine pipeline: implications for the future of dengue control. Vaccine 33: 32933298. [Google Scholar]
  25. World Health Organization, 2016. Dengue Vaccine Research. Available at: http://www.who.int/immunization/research/development/dengue_vaccines/en/. Accessed May 10, 2017.
  26. Thavara U, Tawatsin A, Nagao Y, , 2014. Simulations to compare efficacies of tetravalent dengue vaccines and mosquito vector control. Epidemiol Infect 142: 12451258. [Google Scholar]
  27. Chao DL, Longini IM, Halloran ME, , 2013. The effects of vector movement and distribution in a mathematical model of dengue transmission. PLoS One 8: e76044. [Google Scholar]
  28. Scott TW, Morrison AC, , 2009. Vector dynamics and transmission of dengue virus: Implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr Top Microbiol Immunol 338: 115128. [Google Scholar]
  29. Andraud M, Hens N, Marais C, Beutels P, , 2012. Dynamic epidemiological models for dengue transmission: a systematic review of structural approaches. PLoS One 7: e49085. [Google Scholar]
  30. Instituto Nacional de Estadistica y Geografia, 2017. Population Yucatan–INEGI. Available at: http://www.beta.inegi.org.mx/app/areasgeograficas/?ag=31. Accessed November 5, 2016.
  31. R Core Team, 2014. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
  32. Koopman JS, Prevots DR, Mann MAV, Dantes HG, Aquino MLZ, Longini IM, Amor JS, , 1991. Determinants and predictors of dengue infection in Mexico. Am J Epidemiol 133: 11681178 (abstract). Available at: http://www.ncbi.nlm.nih.gov/pubmed/2035520%5Cnhttp://aje.oxfordjournals.org/content/133/11/1168. [Google Scholar]
  33. Lorono MA, Farfan Ale J, Rosado EP, Arjona AI, Flores LF, Manzano LA, Zavala JE, , 1989. Prevalencia de anticuerpos contra virus Dengue en Yucatán, México, 1985. Rev Latinoam Microbiol 31: 259262. [Google Scholar]
  34. Farfán-Ale JA, Loroño-Pino MA, , 1991. The incidence of dengue virus infection in children 8 to 14 years old residing in the urban and rural areas of the city of Mérida, Yucatán. Bol Med Hosp Infant Mex 48: 780784. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1768354. [Google Scholar]
  35. Gómez-Carro S, Méndez-Domínguez N, Mendez-Galván JF, , 2017. Dengue seropositivity in a randomly selected sample from Yucatan analyzed in the context of dengue cases reported between 1996 and 2006. J Epidemiol Res 3: 2327. [Google Scholar]
  36. Velasco-Salas ZI, Sierra GM, Guzmán DM, Zambrano J, Vivas D, Comach G, Wilschut JC, Tami A, , 2014. Dengue seroprevalence and risk factors for past and recent viral transmission in Venezuela: a comprehensive community-based study. Am J Trop Med Hyg 91: 10391048. [Google Scholar]
  37. Standish K, Kuan G, Avilés W, Balmaseda A, Harris E, , 2010. High dengue case capture rate in four years of a cohort study in Nicaragua compared to national surveillance data. PLoS Negl Trop Dis 4: e633. [Google Scholar]
  38. Braga C, Luna CF, Martelli CMT, Souza WVD., Cordeiro MT, Alexander N, Albuquerque MDFPMD, Júnior JCS, Marques ET, , 2010. Seroprevalence and risk factors for dengue infection in socio-economically distinct areas of Recife, Brazil. Acta Trop 113: 234240. [Google Scholar]
  39. World Health Organization, 2016. Dengue vaccine: WHO position paper—July 2016. Wkly Epidemiol Rec 30: 349364. [Google Scholar]
  40. World Health Organization, 2016. Meeting of the strategic advisory group of experts on immunization, April 2016–conclusions and recommendations. Wkly Epidemiol Rec 21: 266284. [Google Scholar]
  41. Betancourt-Cravioto M, Kuri-Morales P, González-Roldán JF, Tapia-Conyer R, , 2014. Introducing a dengue vaccine to Mexico: development of a system for evidence-based public policy recommendations. PLoS Negl Trop Dis 8: e3009. [Google Scholar]
  42. Coudeville L, Garnett GP, , 2012. Transmission dynamics of the four dengue serotypes in southern Vietnam and the potential impact of vaccination. PLoS One 7: e51244. [Google Scholar]
  43. Reiner RC, 2014. Time-varying, serotype-specific force of infection of dengue virus. Proc Natl Acad Sci USA 111: E2694E2702. [Google Scholar]
  44. Ferguson NM, Rodríguez-Barraquer I, Dorigatti I, Mier-y-Teran-Romero L, Laydon DJ, Cummings DAT, , 2016. Benefits and risks of the Sanofi-Pasteur dengue vaccine: modeling optimal deployment. Science 353: 10331036. [Google Scholar]
  45. Araujo DV, Bahia L, Rendeiro M, Pinho AS, Genovez V, de Menezes Gonçalves T, Abreu M, , 2016. Estimation of the potential impact of dengue vaccination on clinical outcomes in Brazil. J Bras Econ Saúde 8: 315. [Google Scholar]
  46. WHO-VMI Dengue Vaccine Modeling Group, 2012. Assessing the potential of a candidate dengue vaccine with mathematical modeling. PLoS Negl Trop Dis 6: e1450. [Google Scholar]
  47. Ten Bosch QA, Singh BK, Hassan MRA, Chadee DD, Michael E, , 2016. The role of serotype interactions and seasonality in dengue model selection and control: insights from a pattern matching approach. PLoS Negl Trop Dis 10: e0004680. [Google Scholar]
  48. Johansson MA, Hombach J, Cummings DAT, , 2011. Models of the impact of dengue vaccines: a review of current research and potential approaches. Vaccine 29: 58605868. [Google Scholar]
  49. Flasche S, 2016. The long-term safety, public health impact, and cost-effectiveness of routine vaccination with a recombinant, live-attenuated dengue vaccine (Dengvaxia): a model comparison study. PLoS Med 13: e1002181. [Google Scholar]

Data & Media loading...

  • Received : 15 May 2017
  • Accepted : 25 Nov 2017
  • Published online : 19 Feb 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error