Volume 97, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Peptide vaccine strategies using -derived antigens have emerged as an attractive approach against malaria. However, relatively few studies have been conducted with malaria-exposed populations from non-African countries. Herein, the seroepidemiological profile against of naturally exposed individuals from a Brazilian malaria-endemic area against synthetic peptides derived from vaccine candidates circumsporozoite protein (CSP), liver stage antigen-1 (LSA-1), erythrocyte binding antigen-175 (EBA-175), and merozoite surface protein-3 (MSP-3) was investigated. Moreover, human leukocyte antigen (HLA)-DRB1* and HLA-DQB1* were evaluated to characterize genetic modulation of humoral responsiveness to these antigens. The study was performed using blood samples from 187 individuals living in rural malaria-endemic villages situated near Porto Velho, Rondônia State. Specific IgG and IgM antibodies and IgG subclasses were detected by enzyme-linked immunosorbent assay, and HLA-DRB1* and HLA-DQB1* low-resolution typing was performed by PCR-SSP. All four synthetic peptides were broadly recognized by naturally acquired antibodies. Regarding the IgG subclass profile, only CSP induced IgG1 and IgG3 antibodies, which is an important fact given that the acquisition of protective immunity appears to be associated with the cytophilicity of IgG1 and IgG3 antibodies. HLA-DRB1*11 and HLA-DQB1*7 had the lowest odds of responding to EBA-175. Our results showed that CSP, LSA-1, EBA, and MSP-3 are immunogenic in natural conditions of exposure and that anti-EBA antibody responses appear to be modulated by HLA class II antigens.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2016. World Malaria Report (2016). Available at: http://www.who.int/malaria/publications/world-malaria-report-2016/report/en/.
  2. Langhorne J, Ndungu FM, Sponaas AM, Marsh K, , 2008. Immunity to malaria: more questions than answers. Nat Immunol 9: 725732.[Crossref] [Google Scholar]
  3. White MT, Griffin JT, Akpogheneta O, Conway DJ, Koram KA, Riley EM, Ghani AC, , 2014. Dynamics of the antibody response to Plasmodium falciparum infection in African children. J Infect Dis 210: 11151122.[Crossref] [Google Scholar]
  4. McGregor IA, , 1964. The passive transfer of human malarial immunity. Am J Trop Med Hyg 13: 237239.[Crossref] [Google Scholar]
  5. Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P, , 1990. Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med 172: 16331641.[Crossref] [Google Scholar]
  6. Bouharoun-Tayoun HP, Druilhe P, , 1992. P. falciparum malaria: evidence for an isotype imbalance may be responsible for the delayed acquisition of protective immunity. Infect Immun 60: 14731481. [Google Scholar]
  7. Luty AJ, Mayombo J, Lekoulou F, Mshana R, , 1994. Immunologic responses to soluble exoantigens of Plasmodium falciparum in Gabonese children exposed to continuous intense infection. Am J Trop Med Hyg 51: 720729.[Crossref] [Google Scholar]
  8. Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P, , 1995. Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J Exp Med 182: 409418.[Crossref] [Google Scholar]
  9. Aribot G, Rogier C, Sarthou JL, Trape JF, Balde AT, Druilhe P, Roussilhon C, , 1996. Pattern of immunoglobulin isotype response to Plasmodium falciparum blood-stage antigens in individuals living in a holoendemic area of Senegal (Dielmo, west Africa). Am J Trop Med Hyg 54: 449457.[Crossref] [Google Scholar]
  10. Banic DM, Oliveira-Ferreira J, Pratt-Riccio LR, Conseil V, Gonçalves D, Fialho RR, Gras-Masse H, Daniel-Ribeiro CT, Camus D, , 1998. Immune response and lack of immune response to Plasmodium falciparum P126 antigen and its amino-terminal repeat in malaria-infected humans. Am J Trop Med Hyg 58: 768774.[Crossref] [Google Scholar]
  11. Taylor RR, Allen SJ, Greenwood BM, Riley EM, , 1998. IgG3 antibodies to Plasmodium falciparum merozoite surface protein 2 (MSP2): increasing prevalence with age and association with clinical immunity to malaria. Am J Trop Med Hyg 58: 406413.[Crossref] [Google Scholar]
  12. Ndungu FM, Bull PC, Ross A, Lowe BS, Kabiru E, Marsh K, , 2002. Naturally acquired immunoglobulin (Ig)G subclass antibodies to crude asexual Plasmodium falciparum lysates: evidence for association with protection for IgG1 and disease for IgG2. Parasite Immunol 24: 7782.[Crossref] [Google Scholar]
  13. Soe S, Theisen M, Roussilhon C, Aye KS, Druilhe P, , 2004. Association between protection against clinical malaria and antibodies to merozoite surface antigens in an area of hyperendemicity in Myanmar: complementarity between responses to merozoite surface protein 3 and the 220-kilodalton glutamate-rich protein. Infect Immun 72: 247252.[Crossref] [Google Scholar]
  14. Lima-Junior JC, , et al., 2011. B cell epitope mapping and characterization of naturally acquired antibodies to the Plasmodium vivax merozoite surface protein-3α (PvMSP-3α) in malaria exposed individuals from Brazilian Amazon. Vaccine 29: 18011811.[Crossref] [Google Scholar]
  15. Dobaño C, , et al., 2012. Age-dependent IgG subclass responses to Plasmodium falciparum EBA-175 are differentially associated with incidence of malaria in Mozambican children. Clin Vaccine Immunol 19: 157166.[Crossref] [Google Scholar]
  16. Balogun HA, Awah N, Nilsson S, Rogier C, Trape JF, Chen Q, Roussilhon C, Berzins K, , 2013. Pattern of antibodies to the Duffy binding like domain of Plasmodium falciparum antigen Pf332 in Senegalese individuals. Acta Trop 130: 8087.[Crossref] [Google Scholar]
  17. Osier FH, , et al., 2014. Opsonic phagocytosis of Plasmodium falciparum merozoites: mechanism in human immunity and a correlate of protection against malaria. BMC Med 12: 108.[Crossref] [Google Scholar]
  18. Banic DM, Goldberg AC, Pratt-Riccio LR, Oliveira-Ferreira J, Santos F, Gras-Masse H, Camus D, Kalil J, Daniel-Ribeiro CT, , 2002. Human leukocyte antigen class II control of the immune response to p126-derived amino terminal peptide from Plasmodium falciparum . Am J Trop Med Hyg 66: 509515.[Crossref] [Google Scholar]
  19. Pratt-Riccio LR, Lima-Junior JC, Carvalho LJ, Theisen M, Espíndola-Mendes EC, Santos F, Oliveira-Ferreira J, Goldberg AC, Daniel-Ribeiro CT, Banic DM, , 2005. Antibody response profiles induced by Plasmodium falciparum glutamate-rich protein in naturally exposed individuals from a Brazilian area endemic for malaria. Am J Trop Med Hyg 73: 10961103. [Google Scholar]
  20. Pratt-Riccio LR, , et al., 2008. Evaluation of the genetic polymorphism of Plasmodium falciparum P126 protein (SERA or SERP) and its influence on naturally acquired specific antibody responses in malaria-infected individuals living in the Brazilian Amazon. Malar J 7: 144.[Crossref] [Google Scholar]
  21. Pratt-Riccio LR, , et al., 2011. Antibodies against the Plasmodium falciparum glutamate-rich protein from naturally exposed individuals living in a Brazilian malaria-endemic area can inhibit in vitro parasite growth. Mem Inst Oswaldo Cruz 106 (Suppl 1): 3443.[Crossref] [Google Scholar]
  22. Riccio EK, Totino PR, Pratt-Riccio LR, Ennes-Vidal V, Soares IS, Rodrigues MM, Souza JM, Daniel-Ribeiro CT, Ferreira-da-Cruz MF, , 2013. Cellular and humoral immune responses against the Plasmodium vivax MSP-119 malaria vaccine candidate in individuals living in an endemic area in north-eastern Amazon region of Brazil. Malar J 12: 326.[Crossref] [Google Scholar]
  23. Oliveira-Ferreira J, Lacerda MV, Brasil P, Ladislau JL, Tauil PL, Daniel-Ribeiro CT, , 2010. Malaria in Brazil: an overview. Malar J 9: 115.[Crossref] [Google Scholar]
  24. Andrade AL, Martelli CM, Oliveira RM, Arias JR, Zicker F, Pang L, , 1995. High prevalence of asymptomatic malaria in gold mining areas in Brazil. Clin Infect Dis 20: 475.[Crossref] [Google Scholar]
  25. Alves FP, Durlacher RR, Menezes MJ, Krieger H, Silva LH, Camargo EP, , 2002. High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. Am J Trop Med Hyg 66: 641648.[Crossref] [Google Scholar]
  26. Tada MS, Ferreira RG, Katsuragawa TH, Martha RC, Costa JD, Albrecht L, Wunderlich G, Silva LH, , 2012. Asymptomatic infection with Plasmodium falciparum and Plasmodium vivax in the Brazilian Amazon Basin: to treat or not to treat? Mem Inst Oswaldo Cruz 107: 621629.[Crossref] [Google Scholar]
  27. Gomes LR, , et al., 2013. Asymptomatic infection in individuals from the municipality of Barcelos (Brazilian Amazon) is not associated with the anti-Plasmodium falciparum glycosylphosphatidyinositol antibody response. Mem Inst Oswaldo Cruz 108: 796800.[Crossref] [Google Scholar]
  28. Mendonça VR, Souza LC, Garcia GC, Magalhães BM, Lacerda MV, Andrade BB, Gonçalves MS, Barral-Netto M, , 2014. DDX39B (BAT1), TNF and IL6 gene polymorphisms and association with clinical outcomes of patients with Plasmodium vivax malaria. Malar J 13: 278.[Crossref] [Google Scholar]
  29. Shute GT, , 1988. The microscpopic diagnosis of malaria. Wernsdorfer WH, McGregor SI, eds. Malaria: Principles and Practice of Malariology. New York, NY: Churchill Livingstone, 781–814.
  30. Snounou G, , 1996. Detection and identification of the four malaria parasite species infecting humans by PCR amplification. Methods Mol Biol 50: 263291. [Google Scholar]
  31. Gausepohl H, Boulin C, Kraft M, Frank RW, , 1996. Automated multiple peptide synthesis. Pept Res 5: 315320. [Google Scholar]
  32. Oliveira-Ferreira J, Pratt-Riccio LR, Arruda M, Santos F, Daniel-Ribeiro CT, Goldberg AC, Banic DM, , 2004. HLA class II and antibody responses to circumsporozoite protein repeats of P. vivax (VK210, VK247 and P. vivax-like) in individuals naturally exposed to malaria. Acta Trop 92: 6369.[Crossref] [Google Scholar]
  33. Olerup O, Zetterquist H, , 1992. HLA-DR typing by PCR amplification with sequence-specific primers (PCR-SSP) in 2 hours: an alternative to serological DR typing in clinical practice including donor-recipient matching in cadaveric transplantation. Tissue Antigens 39: 225235.[Crossref] [Google Scholar]
  34. Bunce M, O’Neil CM, Barnardo MCNM, Krausa P, Browning MJ, Morris PJ, Welsh KI, , 1995. Phototyping: comprehensive DNA typing for HLA-A, B, C, DRB1, DRB3, DRB4, DRB5 and DQB1 by PCR with 144 primer mixes utilizing sequence-specific primers (PCR-SSP). Tissue Antigens 46: 355367.[Crossref] [Google Scholar]
  35. Baur MP, Danilovs JA, , 1980. Population analysis of HLA-A, B, C, DR and other genetic markers. Terasaki PI, ed. Histocompatibility Testing. Los Angeles, CA: UCLA Tissue Typing Laboratory, 955–1210.
  36. Dodoo D, , et al., 2011. Measuring naturally acquired immune responses to candidate malaria vaccine antigens in Ghanaian adults. Malar J 10: 168.[Crossref] [Google Scholar]
  37. Camargo LM, Noronha E, Salcedo JM, Dutra AP, Krieger H, Pereira da Silva LH, Camargo EP, , 1999. The epidemiology of malaria in Rondonia (western Amazon region, Brazil): study of a riverine population. Acta Trop 72: 111.[Crossref] [Google Scholar]
  38. Tada MS, Marques RP, Mesquita E, Dalla Martha RC, Rodrigues JA, Costa JDN, Pepelascov RR, Katsuragawa TH, Pereira-da-Silva LH, , 2007. Urban malaria in the Brazilan western Amazon Region. I. High prevalence of asymptomatic carriers in an urban riverside district is associated with a high level of clinical malaria. Mem Inst Oswaldo Cruz 102: 263269.[Crossref] [Google Scholar]
  39. Costa JD, Zanchi FB, Rodrigues FL, Honda ER, Katsuragawa TH, Pereira DB, Taborda RL, Tada MS, Ferreira RG, Pereira-da-Silva LH, , 2013. Cross-reactive anti-PfCLAG9 antibodies in the sera of asymptomatic parasite carriers of Plasmodium vivax . Mem Inst Oswaldo Cruz 108: 98105.[Crossref] [Google Scholar]
  40. Fratus AS, Cabral FJ, Fotoran WL, Medeiros MM, Carlos BC, Martha R, da Silva LH, Lopes SC, Costa FT, Wunderlich G, , 2014. Antibody recognition of Plasmodium falciparum infected red blood cells by symptomatic and asymptomatic individuals in the Brazilian Amazon. Mem Inst Oswaldo Cruz 109: 598601.[Crossref] [Google Scholar]
  41. Egan AF, Morris J, Barnish G, Allen S, Greenwood BM, Kaslow DC, Holder AA, Riley EM, , 1996. Clinical immunity to Plasmodium falciparum malaria is associated with serum antibodies to the 19-kDa C-terminal fragment of the merozoite surface antigen, PfMSP-1. J Infect Dis 173: 765769.[Crossref] [Google Scholar]
  42. Branch OH, Udhayakumar V, Hightower AW, Oloo AJ, Hawley WA, Nahlen BL, Bloland PB, Kaslow DC, Lal AA, , 1998. A longitudinal investigation of IgG and IgM antibody responses to the merozoite surface protein-1 19-kiloDalton domain of Plasmodium falciparum in pregnant women and infants: associations with febrile illness, parasitemia, and anemia. Am J Trop Med Hyg 58: 211219.[Crossref] [Google Scholar]
  43. Roussilhon C, Oeuvray C, Muller-Graf C, Tall A, Rogier C, Trape JF, Theisen M, Balde A, Perignon JL, Druilhe P, , 2007. Long-term clinical protection from falciparum malaria is strongly associated with IgG3 antibodies to merozoite surface protein 3. PLoS Med 4: e320.[Crossref] [Google Scholar]
  44. John CC, Tande AJ, Moormann AM, Sumba PO, Lanar DE, Min XM, Kazura JW, , 2008. Antibodies to pre-erythrocytic Plasmodium falciparum antigens and risk of clinical malaria in Kenyan children. J Infect Dis 197: 519526.[Crossref] [Google Scholar]
  45. Nebie I, , et al., 2008. Humoral responses to Plasmodium falciparum blood-stage antigens and association with incidence of clinicalmalaria in children living in an area of seasonal malaria transmission in Burkina Faso, West Africa. Infect Immun 76: 759766.[Crossref] [Google Scholar]
  46. Osier FH, , et al., 2008. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect Immun 76: 22402248.[Crossref] [Google Scholar]
  47. Ford L, Lobo CA, Rodriguez M, Zalis MG, Machado RL, Rossit AR, Cavasini CE, Couto AA, Enyong PA, Lustigman S, , 2007. Differential antibody responses to Plasmodium falciparum invasion ligand proteins in individuals living inmalaria-endemic areas in Brazil and Cameroon. Am J Trop Med Hyg 77: 977983. [Google Scholar]
  48. Sarr JB, , et al., 2012. Differential acquisition of human antibody responses to Plasmodium falciparum according to intensity of exposure to Anopheles bites. Trans R Soc Trop Med Hyg 106: 460467.[Crossref] [Google Scholar]
  49. Okenu DM, Riley EM, Bickle QD, Agomo PU, Barbosa A, Daugherty JR, Lanar DE, Conway DJ, , 2000. Analysis of human antibodies to erythrocyte binding antigen 175 of Plasmodium falciparum . Infect Immun 68: 55595566.[Crossref] [Google Scholar]
  50. Richards JS, , et al., 2010. Association between naturally acquired antibodies to erythrocyte-binding antigens of Plasmodium falciparum and protection from malaria and high-density parasitemia. Clin Infect Dis 51: e50e60.[Crossref] [Google Scholar]
  51. Villasis E, Lopez-Perez M, Torres K, Gamboa D, Neyra V, Bendezu J, Tricoche N, Lobo C, Vinetz JM, Lustigman S, , 2012. Anti-Plasmodium falciparum invasion ligand antibodies in a low malaria transmission region, Loreto, Peru. Malar J 11: 361.[Crossref] [Google Scholar]
  52. Nhabomba AJ, , et al., 2014. Impact of age of first exposure to Plasmodium falciparum on responses to malaria in children: a randomized, controlled trial in Mozanbique. Malar J 13: 121.[Crossref] [Google Scholar]
  53. John CC, Moormann AM, Pregibon DC, Sumba PO, McHugh MM, Narum DL, Lanar DE, Schluchter MD, Kazura JW, , 2005. Correlation of high levels of antibodies to multiple pre-erythrocytic Plasmodium falciparum antigens and protection from infection. Am J Trop Med Hyg 73: 222228. [Google Scholar]
  54. Arama C, , et al., 2015. Genetic resistance to malaria is associated with greater enhancement of immunoglobulin (Ig)M than IgG responses to a broad array of Plasmodium falciparum antigens. Open Forum Infect Dis 2: ofv118.[Crossref] [Google Scholar]
  55. Riley EM, Allen SJ, Wheeler JG, Blackman MJ, Bennett S, Takacs B, Schönfeld HJ, Holder AA, Greenwood BM, , 1992. Naturally acquired cellular and humoral immune responses to the major merozoite surface antigen (PfMSP1) of Plasmodium falciparum are associated with reduced malaria morbidity. Parasite Immunol 14: 321337.[Crossref] [Google Scholar]
  56. Al-Yaman F, Genton B, Anders RF, Falk M, Triglia T, Lewis D, Hii J, Beck HP, Alpers MP, , 1994. Relationship between humoral response to Plasmodium falciparum merozoite surface antigen-2 and malaria morbidity in a highly endemic area of Papua New Guinea. Am J Trop Med Hyg 51: 593602.[Crossref] [Google Scholar]
  57. Cavanagh DR, Dodoo D, Hviid L, Kurtzhals JA, Theander TG, Akanmori BD, Polley S, Conway DJ, Koram K, McBride SJ, , 2004. Antibodies to the N-terminal block 2 of Plasmodium falciparum merozoite surface protein 1 are associated with protection against clinical malaria. Infect Immun 72: 64926502.[Crossref] [Google Scholar]
  58. Metzger WG, Okenu DM, Cavanagh DR, Robinson JV, Bojang KA, Weiss HA, McBride JS, Greenwood BM, Conway DJ, , 2003. Serum IgG3 to the Plasmodium falciparum merozoite surface protein 2 is strongly associated with reduced prospective risk of malaria. Parasite Immunol 25: 307312.[Crossref] [Google Scholar]
  59. Polley SD, Conway DJ, Cavanagh DR, McBride JS, Lowe BS, Williams TN, Mwangi TW, Marsh K, , 2006. High levels of serum antibodies to merozoite surface protein 2 of Plasmodium falciparum are associated with reduced risk of clinical malaria in coastal Kenya. Vaccine 24: 42334246.[Crossref] [Google Scholar]
  60. Stanisic DI, , et al., 2009. Immunoglobulin-G subclass-specific responses against Plasmodium falciparum merozoite antigens are associated with control of parasitemia and protection from symptomatic illness. Infect Immun 77: 11651174.[Crossref] [Google Scholar]
  61. Cherif MK, , et al., 2015. Is Fc gamma receptor IIA (FcγRIIA) polymorphism associated with clinical malaria and Plasmodium falciparum specific antibody levels in children from Burkina Faso? Acta Trop 142: 4146.[Crossref] [Google Scholar]
  62. Ortega E, Soto-Cruz I, , 2007. Early biochemical events in leukocyte activation through receptors for IgG. Signal Transduct 7: 415426.[Crossref] [Google Scholar]
  63. Aucan C, Traoré Y, Tall F, Nacro B, Traoré-Leroux T, Fumoux F, Rihet P, , 2000. Infect High immunoglobulin G2 (IgG2) and low IgG4 levels are associated with human resistance to Plasmodium falciparum malaria. Immun. 68: 12521258. [Google Scholar]
  64. Nasr A, Iriemenam NC, Troye-Blomberg M, Giha HA, Balogun HA, Osman OF, Montgomery SM, ElGhazali G, Berzins K, , 2007. Fc gamma receptor IIa (CD32) polymorphism and antibody responses to asexual blood-stage antigens of Plasmodium falciparum malaria in Sudanese patients. Scand J Immunol 66: 8796.[Crossref] [Google Scholar]
  65. Dubois B, Deloron P, Astagneau P, Chougnet C, Lepers JP, , 1993. Isotypic analysis of Plasmodium falciparum-specific antibodies and their relation to protection in Madagascar. Infect Immun 61: 44984500. [Google Scholar]
  66. Lucchi NW, , et al., 2008. Antibody responses to the merozoite surface protein-1 complex in cerebral malaria patients in India. Malar J 7: 121.[Crossref] [Google Scholar]
  67. Sarthou JL, Angel G, Aribot G, Rogier C, Dieye A, Toure Balde A, Diatta B, Seignot P, Roussilhon P, , 1997. Prognostic value of anti-Plasmodium falciparum-specific immunoglobulin G3, cytokines, and their soluble receptors in West African patients with severe malaria. Infect Immun 65: 32713276. [Google Scholar]
  68. Tangteerawatana P, Krudsood S, Chalermrut K, Looareesuwan S, Khusmith S, , 2001. Natural human IgG subclass antibodies to Plasmodium falciparum blood stage antigens and their relation to malaria resistance in an endemic area of Thailand. Southeast Asian J Trop Med Public Health 32: 247254. [Google Scholar]
  69. Snapper CM, Finkelman FD, , 1999. Immunoglobulin class switching. Paul WE, ed., Fundamental Immunology, 4th edition. Philadelphia, PA: Lippincott-Raven, 831–861.
  70. Stavnezer J, , 1996. Immunoglobulin class switching. Curr Opin Immunol 8: 199205.[Crossref] [Google Scholar]
  71. Tongren JE, , et al., 2006. Target antigen, age, and duration of antigen exposure independently regulate immunoglobulin G subclass switching in malaria. Infect Immun 74: 257264.[Crossref] [Google Scholar]
  72. Oluwasogo OA, Ebenezer OO, Chiaka A, , 2012. Evaluation of host humoral antibody production against Plasmodium falciparum recombinant circumsporozoite antigen in Nigerian children. J Vector Borne Dis 49: 151156. [Google Scholar]
  73. Noland GS, Jansen P, Vulule JM, Park GS, Ondigo BN, Kazura JW, Moormann AM, John CC, , 2015. Effect of transmission intensity and age on subclass antibody responses to Plasmodium falciparum pre-erythrocytic and blood-stage antigens. Acta Trop 142: 4756.[Crossref] [Google Scholar]
  74. John CC, Ouma JH, Sumba PO, Hollingdale MR, Kazura JW, King CL, , 2002. Lymphocyte proliferation and antibody responses to Plasmodium falciparum liver-stage antigen-1 in a highland area of Kenya with seasonal variation in malaria transmission. Am J Trop Med Hyg 66: 372378.[Crossref] [Google Scholar]
  75. John CC, Zickafoose JS, Sumba PO, King CL, Kazura JW, , 2003. Antibodies to the Plasmodium falciparum antigens circumsporozoite protein, thrombospondin-related adhesive protein, and liver-stage antigen 1 vary by ages of subjects and by season in a highland area of Kenya. Infect Immun 71: 43204325.[Crossref] [Google Scholar]
  76. Courtin D, , et al., 2009. The quantity and quality of African children’s IgG responses to merozoite surface antigens reflect protection against Plasmodium falciparum malaria. PLoS One 4: e7590.[Crossref] [Google Scholar]
  77. Mamo H, Esen M, Ajua A, Theisen M, Mordmüller B, Petros B, , 2013. Humoral immune response to Plasmodium falciparum vaccine candidate GMZ2 and its components in populations naturally exposed to seasonal malaria in Ethiopia. Malar J 12: 51.[Crossref] [Google Scholar]
  78. Garraud O, Nkenfou C, Bradley JE, Perler FB, Nutman TB, , 1995. Identification of recombinant filarial proteins capable of inducing polyclonal and antigen-specific IgE and IgG4 antibodies. J Immunol 155: 13161325. [Google Scholar]
  79. Toure FS, Deloron P, Migot-Nabias F, , 2006. Analysis of human antibodies to erythrocyte binding antigen 175 peptide 4 of Plasmodium falciparum . Clin Med Res 4: 16.[Crossref] [Google Scholar]
  80. Mewono L, Matondo-Maya DW, Matsiegui PB, Agnandji ST, Kendjo E, Barondi F, Issifou S, Kremsner PG, Mavoungou E, , 2008. Interleukin-21 is associated with IgG1 and IgG3 antibodies to erythrocyte-binding antigen-175 peptide 4 of Plasmodium falciparum in Gabonese children with acute falciparum malaria. Eur Cytokine Netw 19: 3036. [Google Scholar]
  81. Patarroyo ME, , et al., 1991. Genetic control of the immune response to a synthetic vaccine against Plasmodium falciparum . Parasite Immunol 13: 509516.[Crossref] [Google Scholar]
  82. Beck HP, Felger I, Genton B, Alexander N, al-Yaman F, Anders RF, Alpers M, , 1995. Humoral and cell-mediated immunity to the Plasmodium falciparum ring-infected erythrocyte surface antigen in an adult population exposed to highly endemic malaria. Infect Immun 63: 596600. [Google Scholar]
  83. Stephens HA, Brown AE, Chandanayingyong D, Webster HK, Sirikong M, Longta P, Vangseratthana R, Gordon DM, Lekmak S, Rungruang E, , 1995. The presence of the HLA class II allele DPB1*0501 in ethnic Thais correlates with an enhanced vaccine-induced antibody response to a malaria sporozoite antigen. Eur J Immunol 25: 31423147.[Crossref] [Google Scholar]
  84. Nardin EH, Oliveira GA, Calvo-Calle JM, Castro ZR, Nussenzweig RS, Schmeckpeper B, Hall BF, Diggs C, Bodison S, Edelman R, , 2000. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes. J Infect Dis 182: 14861496.[Crossref] [Google Scholar]
  85. Johnson AH, , et al., 2004. Human leukocyte antigen class II alleles influence levels of antibodies to the Plasmodium falciparum asexual-stage apical membrane antigen 1 but not to merozoite surface antigen 2 and merozoite surface protein 1. Infect Immun 72: 27622771.[Crossref] [Google Scholar]
  86. Zhang Q, Xue X, Xu X, Wang C, Chang W, Pan W, , 2009. Influence of HLA-DRB1 alleles on antibody responses to PfCP-2.9-immunized and naturally infected individuals. J Clin Immunol 29: 454460.[Crossref] [Google Scholar]
  87. Storti-Melo LM, , et al., 2012. Influence of HLA-DRB-1 alleles on the production of antibody against CSP, MSP-1, AMA-1, and DBP in Brazilian individuals naturally infected with Plasmodium vivax . Acta Trop 121: 152155.[Crossref] [Google Scholar]
  88. Lima-Junior JC, , et al., 2012. Influence of HLA-DRB1 and HLA-DQB1 alleles on IgG antibody response to the P. vivax MSP-1, MSP-3α and MSP-9 in individuals from Brazilian endemic area. PLoS One 7: e36419.[Crossref] [Google Scholar]
  89. Lima-Junior J, Pratt-Riccio LR, , 2016. Major histocompatibility complex and malaria: focus on Plasmodium vivax infection. Front Immunol 7: 13.

Data & Media loading...

  • Received : 05 May 2017
  • Accepted : 06 Jun 2017
  • Published online : 18 Sep 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error