1921
Volume 97, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

The function of long noncoding RNAs (lncRNAs) in liver injury resulted by dengue virus (DENV) infection have not yet been explored. The differential expression profiles of lncRNAs (as well as mRNAs) in the L-02 liver cells infected by DENV1, DENV2, or uninfected were compared and analyzed after a high throughput RNA seq. The significantly up-regulated and down-regulated lncRNAs (or mRNAs) resulted by DENV infection were identified with a cutoff value at log2 (ratio) ≥ 1.5 and log2 (ratio) ≤ −1.5 (ratio = the reads of the lncRNAs or mRNAs from the infection groups divided by the reads from the control group). Several differentially expressed lncRNAs were verified with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR). Target gene analysis, pre-miRNA prediction, and the lncRNA-mRNA co-expression network construction were performed to predict the function of the differentially expressed lncRNAs. The differentially expressed lncRNAs were associated with biosynthesis, DNA/RNA related processes, inhibition of estrogen signaling pathway, sterol biosynthetic process, protein dimerization activity, vesicular fraction in DENV1 infection group; and with protein secretion, methyltransferase process, host cell cytoskeleton reorganization and the small GTPase Ras superfamily, inhibition of cell proliferation, induction of apoptosis in DENV2 infection. LncRNAs might be novel diagnostic markers and targets for further researches on dengue infection and liver injury resulted by dengue virus.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0307
2017-10-02
2019-07-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/97/6/tpmd170307.html?itemId=/content/journals/10.4269/ajtmh.17-0307&mimeType=html&fmt=ahah

References

  1. Guzmán MG, Kourí G, , 2002. Dengue: an update. Lancet Infect Dis 2: 3342. [Google Scholar]
  2. Mishra G, Jain A, Prakash O, Prakash S, Kumar R, Garg RK, Pandey N, Singh M, , 2015. Molecular characterization of dengue viruses circulating during 2009–2012 in Uttar Pradesh, India. J Med Virol 87: 6875. [Google Scholar]
  3. Bhatt S, 2013. The global distribution and burden of dengue. Nature 496: 504507. [Google Scholar]
  4. Thongtan T, Panyim S, Smith DR, , 2004. Apoptosis in dengue virus infected liver cell lines HepG2 and Hep3B. J Med Virol 72: 436444. [Google Scholar]
  5. Seneviratne SL, Malavige GN, de Silva HJ, , 2006. Pathogenesis of liver involvement during dengue viral infections. Trans R Soc Trop Med Hyg 100: 608614. [Google Scholar]
  6. Huerre MR, 2001. Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children. Virchows Arch 438: 107115. [Google Scholar]
  7. Samanta J, Sharma V, , 2015. Dengue and its effects on liver. World J Clin Cases 3: 125131. [Google Scholar]
  8. Roy A, Sarkar D, Chakraborty S, Chaudhuri J, Ghosh P, Chakraborty S, , 2013. Profile of hepatic involvement by dengue virus in dengue infected children. N Am J Med Sci 5: 480485. [Google Scholar]
  9. Mohan B, Patwari AK, Anand VK, , 2000. Hepatic dysfunction in childhood dengue infection. J Trop Pediatr 46: 4043. [Google Scholar]
  10. Wang XJ, Wei HX, Jiang SC, He C, Xu XJ, Peng HJ, , 2016. Evaluation of aminotransferase abnormality in dengue patients: a meta analysis. Acta Trop 156: 130136. [Google Scholar]
  11. Couvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, Hénin D, Deubel V, , 1999. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum Pathol 30: 11061110. [Google Scholar]
  12. Quagliata L, Terracciano LM, , 2014. Liver diseases and long non-coding RNAs: new insight and perspective. Front Med (Lausanne) 1: 35. [Google Scholar]
  13. Guerrieri F, , 2015. Long non-coding RNAs era in liver cancer. World J Hepatol 7: 19711973. [Google Scholar]
  14. Tripathi V, 2010. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39: 925938. [Google Scholar]
  15. Pan YF, Qin T, Feng L, Yu ZJ, , 2013. Expression profile of altered long non-coding RNAs in patients with HBV-associated hepatocellular carcinoma. J Huazhong Univ Sci Technolog Med Sci 33: 96101. [Google Scholar]
  16. Xu D, Yang F, Yuan JH, Zhang L, Bi HS, Zhou CC, Liu F, Wang F, Sun SH, , 2013. Long noncoding RNAs associated with liver regeneration 1 accelerates hepatocyte proliferation during liver regeneration by activating Wnt/beta-catenin signaling. Hepatology 58: 739751. [Google Scholar]
  17. Guo RN, Lin JY, Li LH, Ke CW, He JF, Zhong HJ, Zhou HQ, Peng ZQ, Yang F, Liang WJ, , 2014. The prevalence and endemic nature of dengue infections in Guangdong, south China: an epidemiological, serological, and etiological study from 2005–2011. PLoS One 9: e85596. [Google Scholar]
  18. Luo L, Liang HY, Hu YS, Liu WJ, Wang YL, Jing QL, Zheng XL, Yang ZC, , 2012. Epidemiological, virological, and entomological characteristics of dengue from 1978 to 2009 in Guangzhou, China. J Vector Ecol 37: 230240. [Google Scholar]
  19. Ramakrishnan MA, , 2016. Determination of 50% endpoint titer using a simple formula. World J Virol 5: 8586. [Google Scholar]
  20. Groves IJ, Reeves MB, Sinclair JH, , 2009. Lytic infection of permissive cells with human cytomegalovirus is regulated by an intrinsic ‘pre-immediate-early’ repression of viral gene expression mediated by histone post-translational modification. J Gen Virol 90: 23642374. [Google Scholar]
  21. Pattanakitsakul SN, Rungrojcharoenkit K, Kanlaya R, Sinchaikul S, Noisakran S, Chen ST, Malasit P, Thongboonkerd V, , 2007. Proteomic analysis of host responses in HepG2 cells during dengue virus infection. J Proteome Res 6: 45924600. [Google Scholar]
  22. Jung KH, Das A, Chai JC, Kim SH, Morya N, Park KS, Lee YS, Chai YG, , 2015. RNA sequencing reveals distinct mechanisms underlying BET inhibitor JQ1-mediated modulation of the LPS-induced activation of BV-2 microglial cells. J Neuroinflammation 12: 36. [Google Scholar]
  23. O’Keeffe G, Hammel S, Owens RA, Keane TM, Fitzpatrick DA, Jones GW, Doyle S, , 2014. RNA-seq reveals the pan-transcriptomic impact of attenuating the gliotoxin self-protection mechanism in Aspergillus fumigatus. BMC Genomics 15: 894. [Google Scholar]
  24. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL, , 2013. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14: R36. [Google Scholar]
  25. Langmead B, Trapnell C, Pop M, Salzberg SL, , 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10: R25. [Google Scholar]
  26. Yusuf NH, Ong WD, Redwan RM, Latip MA, Kumar SV, , 2015. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus). Gene 571: 7180. [Google Scholar]
  27. Farazi TA, Hoell JI, Morozov P, Tuschl T, , 2013. MicroRNAs in human cancer. Adv Exp Med Biol 774: 120. [Google Scholar]
  28. Cai X, Cullen BR, , 2007. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13: 313316. [Google Scholar]
  29. Wilusz JE, Sunwoo H, Spector DL, , 2009. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 23: 14941504. [Google Scholar]
  30. Xiong Y, Chen S, Liu L, Zhao Y, Lin W, Ni J, , 2013. Increased serum microRNA-155 level associated with nonresponsiveness to hepatitis B vaccine. Clin Vaccine Immunol 20: 10891091. [Google Scholar]
  31. Sherman BT, Huang da W, Tan Q, Guo Y, Bour S, Liu D, Stephens R, Baseler MW, Lane HC, Lempicki RA, , 2007. DAVID knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics 8: 426. [Google Scholar]
  32. Wang K, Guo WX, Li N, Gao CF, Shi J, Tang YF, Shen F, Wu MC, Liu SR, Cheng SQ, , 2015. Serum LncRNAs profiles serve as novel potential biomarkers for the diagnosis of HBV-positive hepatocellular carcinoma. PLoS One 10: e0144934. [Google Scholar]
  33. Landeras-Bueno S, Ortín J, , 2016. Regulation of influenza virus infection by long non-coding RNAs. Virus Res 212: 7884. [Google Scholar]
  34. Zhang Q, Chen CY, Yedavalli VS, Jeang KT, , 2013. NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio 4: e00596e00612. [Google Scholar]
  35. Yin Z, Guan D, Fan Q, Su J, Zheng W, Ma W, Ke C, , 2013. lncRNAs expression signatures in response to enterovirus 71 infection. Biochem Biophys Res Commun 430: 629633. [Google Scholar]
  36. Mattick JS, Amaral PP, Dinger ME, Mercer TR, Mehler MF, , 2009. RNA regulation of epigenetic processes. BioEssays 31: 5159. [Google Scholar]
  37. Ahanda ML, Ruby T, Wittzell H, Bed’Hom B, Chaussé AM, Morin V, Oudin A, Chevalier C, Young JR, Zoorob R, , 2009. Non-coding RNAs revealed during identification of genes involved in chicken immune responses. Immunogenetics 61: 5570. [Google Scholar]
  38. Peng X, 2010. Unique signatures of long noncoding RNA expression in response to virus infection and altered innate immune signaling. MBio 1: e00206e00210. [Google Scholar]
  39. Lee LK, Gan VC, Lee VJ, Tan AS, Leo YS, Lye DC, , 2012. Clinical relevance and discriminatory value of elevated liver aminotransferase levels for dengue severity. PLoS Negl Trop Dis 6: e1676. [Google Scholar]
  40. Martina BE, Koraka P, Osterhaus AD, , 2009. Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22: 564581. [Google Scholar]
  41. Ouyang J, 2014. NRAV, a long noncoding RNA, modulates antiviral responses through suppression of interferon-stimulated gene transcription. Cell Host Microbe 16: 616626. [Google Scholar]
  42. Carpenter S, 2013. A long noncoding RNA mediates both activation and repression of immune response genes. Science 341: 789792. [Google Scholar]
  43. Saayman S, Ackley A, Turner AW, Famiglietti M, Bosque A, Clemson M, Planelles V, Morris KV, , 2014. An HIV-encoded antisense long noncoding RNA epigenetically regulates viral transcription. Mol Ther 22: 11641175. [Google Scholar]
  44. Ding YZ, Zhang ZW, Liu YL, Shi CX, Zhang J, Zhang YG, , 2016. Relationship of long noncoding RNA and viruses. Genomics 107: 150154. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0307
Loading
/content/journals/10.4269/ajtmh.17-0307
Loading

Data & Media loading...

Supplemental File

  • Received : 12 Apr 2017
  • Accepted : 17 Aug 2017
  • Published online : 02 Oct 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error