Volume 98, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



, the etiological agent of Chagas diseases, invades the cardiac tissue causing acute myocarditis and heart electrical disturbances. In invasion, the parasite induces [Ca] transients in the host cells, an essential phenomenon for invasion. To date, knowledge on the mechanism that elicits transients of [Ca] during the infection of cardiac myocytes has not been fully characterized. Pannexin1 (Panx1) channel are poorly selective channels found in all vertebrates that serve as a pathway for ATP release. In this article, we demonstrate that infection results in the opening of Panx1 channels in cardiac myocytes. We show that pharmacological blockade of Panx1 channels inhibits –induced [Ca] transients and invasion in cardiac myocytes. Our results indicate that opening of Panx1 channels are required for invasion in cardiac myocytes, and we propose that targeting Panx1 channel could provide new potential therapeutic approaches to treat Chagas disease.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Degenhardt L, 2013. Global burden of disease attributable to illicit drug use and dependence: findings from the Global Burden of Disease Study 2010. Lancet 382: 15641574. [Google Scholar]
  2. Calvet CM, Melo TG, Garzoni LR, Oliveira FO, Jr Silva Neto DT, Meirelles MNSL, Pereira MC, , 2012. Current understanding of the Trypanosoma cruzi-cardiomyocyte interaction. Front Immunol 3: 327. [Google Scholar]
  3. Osorio L, Ríos I, Gutiérrez B, González J, , 2012. Virulence factors of Trypanosoma cruzi: who is who? Microbes Infect 14: 13901402. [Google Scholar]
  4. Tardieux I, Nathanson MH, Andrews NW, , 1994. Role in host cell invasion of Trypanosoma cruzi-induced cytosolic-free Ca2+ transients. J Exp Med 179: 10171022. [Google Scholar]
  5. Yoshida N, , 2006. Molecular basis of mammalian cell invasion by Trypanosoma cruzi. An Acad Bras Cienc 78: 87111. [Google Scholar]
  6. Barr SC, Hanm W, Andrews NW, Lopez JW, Ball BA, Pannabecker TL, Gilmour RF, Jr, 1996. A factor from Trypanosoma cruzi induces repetitive cytosolic free Ca2+ transients in isolated primary canine cardiac myocytes. Infect Immun 64: 17701777. [Google Scholar]
  7. Penuela S, Gehi R, Laird DW, , 2013. The biochemistry and function of pannexin channels. Biochim Biophys Acta 1828: 1522. [Google Scholar]
  8. Chekeni FB, 2010. Pannexin 1 channels mediate ‘find-me’ signal release and membrane permeability during apoptosis. Nature 14: 863867. [Google Scholar]
  9. Adamson SE, Leitinger N, , 2014. The role of pannexin1 in the induction and resolution of inflammation. FEBS Lett 588: 14161422. [Google Scholar]
  10. Maslieieva V, Thompson RJ, , 2014. A critical role for pannexin-1 in activation of innate immune cells of the choroid plexus. Channels (Austin) 8: 131141. [Google Scholar]
  11. Meens MJ, Kwak BR, Duffy HS, , 2015. Role of connexins and pannexins in cardiovascular physiology. Cell Mol Life Sci 72: 27792792. [Google Scholar]
  12. de Carvalho A, Tanowitz H, Wittner M, Dermietzel R, Roy C, Hertzberg E, Spray D, , 1992. Gap junction distribution is altered between cardiac myocytes infected with Trypanosoma cruzi. Circ Res 70: 733742. [Google Scholar]
  13. Campos de Carvalho AC, Roy C, Hertzberg EL, Tanowitz HB, Kessler JA, Weiss LM, Wittner M, Dermietzel R, Gao Y, Spray DC, , 1998. Gap junction disappearance in astrocytes and leptomeningeal cells as a consequence of protozoan infection. Brain Res 790: 304314. [Google Scholar]
  14. Vega JL, Subiabre M, Figueroa F, Schalper KA, Osorio L, González J, Sáez JC, , 2013. Role of gap junctions and hemichannels in parasitic infections. BioMed Res Int 2013: 589130. [Google Scholar]
  15. McKuen MJ, Dahl G, Fields KA, , 2013. Assessing a potential role of host Pannexin 1 during Chlamydia trachomatis infection. PLoS One 8: e63732. [Google Scholar]
  16. Orellana JA, Velasquez S, Williams DW, Sáez JC, Berman JW, Eugenín EA, , 2013. Pannexin1 hemichannels are critical for HIV infection of human primary CD4+ T lymphocytes. J Leukoc Biol 94: 399407. [Google Scholar]
  17. Luban N, Dvorak J, , 1974. Trypanosoma cruzi: interaction with vertebrate cells in vitro. 3. Selection for biological characteristics following intracellular passage. Exp Parasitol 36: 143149. [Google Scholar]
  18. San Francisco J, 2017. Decreased cruzipain and gp85/trans-sialidase family protein expression contributes to loss of Trypanosoma cruzi trypomastigote virulence. Microbes Infect 19: 5561. [Google Scholar]
  19. Ehler E, Moore-Morris T, Lange S, , 2013. Isolation and culture of neonatal mouse cardiomyocytes. J Vis Exp 79: e50154. [Google Scholar]
  20. Rassi A, Jr Rassi A, Marin-Neto JA, , 2010. Chagas disease. Lancet 375: 13881402. [Google Scholar]
  21. Zeledón R, Montenegro VM, Zeledón O, , 2001. Evidence of colonization of man-made ecotopes by Triatoma dimidiata (Latreille, 1811) in Costa Rica. Mem Inst Oswaldo Cruz 96: 659660. [Google Scholar]
  22. Gourbière S, Dorn P, Tripet F, Dumonteil E, , 2012. Genetics and evolution of triatomines: from phylogeny to vector control. Heredity (Edinb) 108: 190202. [Google Scholar]
  23. Araya JE, 2008. Calcineurin B of the human protozoan parasite Trypanosoma cruzi is involved in cell invasion. Microbes Infect 10: 892900. [Google Scholar]
  24. Kienitz MC, Bender K, Dermietzel R, Pott L, Zoidl G, , 2011. Pannexin 1 constitutes the large conductance cation channel of cardiac myocytes. J Biol Chem 286: 290298. [Google Scholar]
  25. Penuela S, Laird DW, , 2012. The cellular life of pannexins. WIREs Membr Transp Signal 1: 621632. [Google Scholar]
  26. Dahl G, , 2015. ATP release through pannexon channels. Philos Trans R Soc Lond B Biol Sci 370: 20140191. [Google Scholar]
  27. Martins RM, Covarrubias C, Rojas RG, Silver AM, Yoshida N, , 2009. Use of L-proline and ATP production by Trypanosoma cruzi metacyclic forms as requirements for host cell invasion. Infect Immun 70: 30233032. [Google Scholar]
  28. Ransford GA, Fregien N, Qiu F, Dahl G, Conner GE, Salathe M, , 2009. Pannexin 1 contributes to ATP release in airway epithelia. Am J Respir Cell Mol Biol 41: 525534. [Google Scholar]
  29. Qu Y, Misaghi S, Newton K, Gilmou LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM, , 2011. Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186: 65536561. [Google Scholar]
  30. Pinheiro AR, Paramos-de-Carvalho D, Certal M, Costa C, Magalhães-Cardoso MT, Ferreirinha F, Costa MA, Correia-de-Sá P, , 2013. Bradykinin-induced Ca2+ signaling in human subcutaneous fibroblasts involves ATP release via hemichannels leading to P2Y12 receptors activation. Cell Commun Signal 11: 70. [Google Scholar]
  31. Riquelme MA, Cea LA, Vega JL, Boric MP, Monyer H, Bennett MV, Frank M, Willecke K, Sáez JC, , 2013. The ATP required for potentiation of skeletal muscle contraction is released via pannexin hemichannels. Neuropharmacology 75: 594603. [Google Scholar]
  32. Séror C, 2011. Extracellular ATP acts on P2Y2 purinergic receptors to facilitate HIV-1 infection. J Exp Med 208: 18231834. [Google Scholar]
  33. Nzila A, Mberu E, Bray P, Kokwaro G, Winstanley P, Marsh K, Ward S, , 2003. Chemosensitization of Plasmodium falciparum by probenecid in vitro. Antimicrob Agents Chemother 47: 21082112. [Google Scholar]
  34. Zhang ZQ, Giroud C, Baltz T, , 1991. In vivo and in vitro sensitivity of Trypanosoma evansi and T. equiperdum to diminazene, suramin, MelCy, quinapyramine and isometamidium. Acta Trop 50: 101110. [Google Scholar]

Data & Media loading...

  • Received : 09 Apr 2017
  • Accepted : 23 Sep 2017
  • Published online : 06 Nov 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error