1921
Volume 98, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Urban malaria is an underestimated serious health concern in African countries. This study aimed to evaluate the risk of malaria transmission in an urban area by evaluating the level of human exposure to bites using an salivary biomarker ( Salivary Gland Protein-6 peptide 1 [gSG6-P1] peptide). Two multidisciplinary cross-sectional studies were undertaken in five sites of Bouaké city (three urban districts and two surrounding villages, used as control; Côte d’Ivoire) during the rainy season and the dry season. Blood samples were obtained from children 6 months to 14 years of age for immunological tests. The level of anti-gSG6-P1 immunoglobulin G (IgG) antibodies was significantly higher in the rainy season than the dry season in both urban and rural sites ( < 0.0001). Interestingly, children with the highest anti-gSG6-P1 IgG responses in the rainy season were infected by . Surprisingly, no difference of anti-gSG6-P1 IgG level was observed between urban and rural areas, for either season. The current data suggest that children in the urban city of Bouaké could be as highly exposed to bites as children living in surrounding villages. The immunological biomarker of human exposure to bites may be used to accurately assess the potential risk of malaria transmission in African urban settings.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0231
2018-03-05
2019-05-26
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/5/tpmd170231.html?itemId=/content/journals/10.4269/ajtmh.17-0231&mimeType=html&fmt=ahah

References

  1. OMS, 2016. Paludisme Aide-mémoire 94. Available at: http://cdrwww.who.int/mediacentre/factsheets/fs094/fr/. Accessed July 15, 2016.
  2. Pages F, Orlandi-Pradines E, Corbelc V, , 2007. Vectors of malaria: biology, diversity, prevention, and individual protection. Med Mal Infect 37: 153161. [Google Scholar]
  3. United Nations Department of Economic and Social Affairs, 2008. World Urbanization Prospects: The 2007 Revision (Highlights), ESA/P/WP/205 (New York). Available at: http://www.un.org/esa/population/publications/wup2007/2007WUP_Highlights_web.pdf. Accessed July 15, 2016.
  4. OMS, 2009. Bidonvilles, changement climatique et santé humaine en Afrique sub-saharienne. Bull World Health Organ 87: 886. [Google Scholar]
  5. Martens P, Hall L, , 2000. Malaria on the move: human population movement and malaria transmission. Emerg Infect Dis 6: 103109. [Google Scholar]
  6. Byrne N, , 2007. Urban malaria risk in sub-Saharan Africa: where is the evidence? Travel Med Infect Dis 5: 135137. [Google Scholar]
  7. Robert V, Macintyre K, Keating J, Trape JF, Duchemin JB, Warren M, Beier JC, , 2003. Malaria transmission in urban sub-Saharan Africa. Am J Trop Med Hyg 68: 169176. [Google Scholar]
  8. Coluzzi M, Sabatini A, Petrarca V, Deco MA, , 1979. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans R Soc Trop Med Hyg 73: 483497. [Google Scholar]
  9. Carnevale P, Robert V, Le Goff G, Etienne F, Manga L, Agogbeto M, Chippaux JP, Mouchet J, , 1993. Données entomologiques sur le paludisme urbain en Afrique tropicale. Cahier Santé 3: 239245. [Google Scholar]
  10. Hay SI, Guerra CA, Tatem AJ, Atkinson PM, Snow RW, , 2005. Urbanization, malaria transmission and disease burden in Africa. Nat Rev Microbiol 3: 8190. [Google Scholar]
  11. Adja AM, N’Goran KE, Kengne P, Koudou GB, Toure M, Koffi AA, Tia E, Fontenille D, Chandre F, , 2006. Tranmission vectorielle du paludisme en savane arborée à Gansé en Côte d’Ivoire. Med Trop 66: 445449. [Google Scholar]
  12. Betsi NA, Koudou BG, Cissé G, Tschannen AB, Pignol AM, Ouattara Y, Madougou M, Tanner M, Utzinger J, , 2007. Effect of an armed conflict on human resources and health systems in Côte d’Ivoire. Trop Med Int Health 8: 903906. [Google Scholar]
  13. Chouaibou M, Simard F, Chandre F, Etang J, Darriet F, Hougard JM, , 2006. Efficacy of bifenthrin-impregnated bednets against Anopheles funestus and pyrethroid-resistant Anopheles gambiae in north Cameroon. Malar J 5: 77. [Google Scholar]
  14. Govella NJ, Chaki PP, Geissbuhler Y, Kannady K, Okumu F, Charlwood JD, Anderson RA, Killeen GF, , 2009. A new tent trap for sampling exophagic and endophagic members of the Anopheles gambiae complex. Malar J 8: 157. [Google Scholar]
  15. Mboera LE, , 2005. Sampling techniques for adult Afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rate. Tanzan Health Res Bull 3: 117124. [Google Scholar]
  16. Smith T, Killeen G, Lengeler C, Tanner M, , 2004. Relationships between the outcome of Plasmodium falciparum infection and the intensity of transmission in Africa. Am J Trop Med Hyg 71: 8086. [Google Scholar]
  17. Remoue F, Cornelie S, Ngom A, Boulanger D, Simondon F, , 2005. Immune responses to arthropod bites during vector-borne diseases. Garraud O, ed. Update in Tropical Immunology. Kerala, India: Transworld Research Network, 377400.
  18. Schwartz B, Ribeiro J, Goldstein M, , 1990. Anti-tick antibodies: an epidemiologic tool in Lyme disease research. Am J Epidemiol 132: 5866. [Google Scholar]
  19. Poinsignon A, 2008. Novel peptide marker corresponding to salivary protein gSG6 potentially identifies exposure to Anopheles bites. PLoS One 3: e2472. [Google Scholar]
  20. Drame PM, 2012. IgG responses to the gSG6-P1 salivary peptide for evaluating human exposure to Anopheles bites in urban areas of Dakar region, Senegal. Malar J 11: 72. [Google Scholar]
  21. Drame PM, Diallo A, Poinsignon A, Boussari O, Dos Santos S, Machault V, Lalou R, Cornelie S, LeHesran JY, Remoue F, , 2013. Evaluation of the effectiveness of malaria vector control measures in urban settings of Dakar by a specific Anopheles salivary biomarker. PLoS One 8: e66354. [Google Scholar]
  22. Dossou-Yovo J, Doannio JMC, Diarrassouba S, Chauvancy G, , 1998. Impact d’aménagements de rizières sur la transmission du paludisme dans la ville de Bouaké, Côte d’Ivoire. Bull Soc Pathol Exot 91: 327333. [Google Scholar]
  23. Kouassi AM, Kouamé KF, Koffi YB, Dje BK, Paturel JE, Oulare S, , 2010. Analysis Of Climate Variability And Its Influences On Seasonal Rainfall Patterns In West Africa: The Case Of The Watershed Of N’zi (Bandama) In Ivory Coast. Cybergeo: European Journal of Geography, Environment, Nature, Landscape, Document 513. Available at: https://cybergeo.revues.org/23388. Accessed February 9, 2017.
  24. Gillies M, Coetzee M, , 1987. A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region), No. 55. Johannesburg, South Africa: The South African Institute for Medical Research.
  25. Sagna AB, 2013. Plasmodium falciparum infection during dry season: IgG responses to Anopheles gambiae salivary gSG6-P1 peptide as sensitive biomarker for malaria risk in northern Senegal. Malar J 12: 301. [Google Scholar]
  26. Robert V, Carnevale P, , 1984. Les vecteurs des paludismes en Afrique subsaharienne. Etudes Médicales 2: 7990. [Google Scholar]
  27. Robert V, Carnevale P, Ouedraogo V, Petrarca V, Coluzzi M, , 1988. La transmission du paludisme humain dans un village de savane du Sud-Ouest du Burkina Faso. Ann Soc Belg Med Trop 68: 107121. [Google Scholar]
  28. Dossou-Yovo J, Doannio JMC, Diarrassouba S, Chauvancy G, , 1998. Impact d’aménagements de rizières sur la transmission du paludisme dans la ville de Bouaké, Côte d’Ivoire. Bull Soc Pathol Exot 91: 327333. [Google Scholar]
  29. Poinsignon A, Cornelie S, Ba F, Boulanger D, Sow C, Rossignol M, Sokhna C, Cisse B, Simondon F, Remoue F, , 2009. Human IgG response to a salivary peptide, gSG6-P1, as a new immuno-epidemiological tool for evaluating low-level exposure to Anopheles bites. Malar J 8: 198. [Google Scholar]
  30. Poinsignon A, 2010. First attempt to validate the gSG6-P1 salivary peptide as an immuno-epidemiological tool for evaluating human exposure to Anopheles funestus bites. Trop Med Int Health 15: 11981203. [Google Scholar]
  31. Londono-Renteria B, 2015. An. gambiae gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study. Parasit Vectors 8: 533. [Google Scholar]
  32. Dye C, Hasibeder G, , 1986. Population dynamics of mosquito-borne disease: effects of flies which bite some people more frequently than others. Trans R Soc Trop Med Hyg 80: 6977. [Google Scholar]
  33. Takken W, Knols BG, , 1999. Odor-mediated behavior of Afrotropical malaria mosquitoes. Annu Rev Entomol 44: 131157. [Google Scholar]
  34. Qui YT, Smallegange RC, Van Lool JJA, Ter Braak CJF, Takken W, , 2006. Interindividual variation in the attractiveness of human odours to the malaria mosquito Anopheles gambiae s.s. Med Vet Entomol 20: 280287. [Google Scholar]
  35. Sagna AB, 2013. gSG6-P1 salivary biomarker discriminates micro-geographical heterogeneity of human exposure to Anopheles bites in low and seasonal malaria areas. Parasit Vectors 6: 68. [Google Scholar]
  36. Drame PM, 2010. Human antibody responses to the Anopheles salivary gSG6-P1 peptide: a novel tool for evaluating the efficacy of ITNs in malaria vector control. PLoS One 5: e15596. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0231
Loading
/content/journals/10.4269/ajtmh.17-0231
Loading

Data & Media loading...

  • Received : 22 Mar 2017
  • Accepted : 22 Nov 2017
  • Published online : 05 Mar 2018

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error