1921
Volume 97, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Recombinant live-attenuated chimeric tetravalent dengue vaccine viruses, TDV-1, -2, -3, and -4, contain the premembrane and envelope genes of dengue virus serotypes 1–4 in the replicative background of the attenuated dengue virus type-2 (DENV-2) PDK-53 vaccine strain. Previous results have shown that these recombinant vaccine viruses demonstrate limited infection and dissemination in and are unlikely to be transmitted by the primary mosquito vector of DENVs. In this report, we expand this analysis by assessing vector competence of all four serotypes of the TDV virus in , the secondary mosquito vector of DENVs. Our results indicate that these vaccine viruses demonstrate incompetence or defective infection and dissemination in these mosquitoes and will likely not be transmissible.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0185
2017-11-08
2018-12-16
Loading full text...

Full text loading...

/deliver/fulltext/14761645/97/5/tpmd170185.html?itemId=/content/journals/10.4269/ajtmh.17-0185&mimeType=html&fmt=ahah

References

  1. Bhatt S, 2013. The global distribution and burden of dengue. Nature 496: 504507.[Crossref] [Google Scholar]
  2. Guzman MG, Harris E, , 2015. Dengue. Lancet 385: 453465.[Crossref] [Google Scholar]
  3. Mizumoto K, Ejima K, Yamamoto T, Nishiura H, , 2014. On the risk of severe dengue during secondary infection: a systematic review coupled with mathematical modeling. J Vector Borne Dis 51: 153164. [Google Scholar]
  4. Rupp R, Luckasen GJ, Kirstein JL, Osorio JE, Santangelo JD, Raanan M, Smith MK, Wallace D, Gordon GS, Stinchcomb DT, , 2015. Safety and immunogenicity of different doses and schedules of a live attenuated tetravalent dengue vaccine (TDV) in healthy adults: a phase 1b randomized study. Vaccine 33: 63516359.[Crossref] [Google Scholar]
  5. Osorio JE, 2014. Safety and immunogenicity of a recombinant live attenuated tetravalent dengue vaccine (DENVax) in flavivirus-naive healthy adults in Colombia: a randomised, placebo-controlled, phase 1 study. Lancet Infect Dis 14: 830838.[Crossref] [Google Scholar]
  6. George SL, 2015. Safety and immunogenicity of a live attenuated tetravalent dengue vaccine candidate in flavivirus-naive adults: a randomized, double-blinded phase 1 clinical trial. J Infect Dis 212: 10321041.[Crossref] [Google Scholar]
  7. Huang CY, 2013. Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax). PLoS Negl Trop Dis 7: e2243.[Crossref] [Google Scholar]
  8. Huang CY-H, Butrapet S, Tsuchiya KR, Bhamarapravati N, Gubler DJ, Kinney RM, , 2003. Dengue 2 PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J Virol 77: 1143611447.[Crossref] [Google Scholar]
  9. Osorio JE, Huang CY-H, Kinney RM, Stinchcomb DT, , 2011. Development of DENVax: a chimeric dengue-2 PDK-53-based tetravalent vaccine for protection against dengue fever. Vaccine 29: 72517260.[Crossref] [Google Scholar]
  10. Kinney RM, Butrapet S, Chang GJ, Tsuchiya KR, Roehrig JT, Bhamarapravati N, Gubler DJ, , 1997. Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated vaccine derivative, strain PDK-53. Virology 230: 300308.[Crossref] [Google Scholar]
  11. Butrapet S, Huang CY-H, Pierro DJ, Bhamarapravati N, Gubler DJ, Kinney RM, , 2000. Attenuation markers of a candidate dengue type 2 vaccine virus, strain 16681 (PDK-53), are defined by mutations in the 5′ noncoding region and nonstructural proteins 1 and 3. J Virol 74: 30113019.[Crossref] [Google Scholar]
  12. Kinney RM, Huang CY, , 2001. Development of new vaccines against dengue fever and Japanese encephalitis. Intervirology 44: 176197.[Crossref] [Google Scholar]
  13. Jirakanjanakit N, Khin MM, Yoksan S, Bhamarapravati N, , 1999. Dynamics of susceptibility and transmissibility of the live, attenuated, candidate vaccines dengue-1 PDK13, dengue-3 PGMK30F3, and dengue-4 PDK48 after oral infection in Aedes aegypti . Am J Trop Med Hyg 61: 672676.[Crossref] [Google Scholar]
  14. Khin MM, Jirakanjanakit N, Yoksan S, Bhamarapravati N, , 1994. Infection, dissemination, transmission, and biological attributes of dengue-2 PDK53 candidate vaccine virus after oral infection in Aedes aegypti . Am J Trop Med Hyg 51: 864869.[Crossref] [Google Scholar]
  15. Johnson BW, Chambers TV, Crabtree MB, Guirakhoo F, Monath TP, Miller BR, , 2004. Analysis of the replication kinetics of the ChimeriVax-DEN 1, 2, 3, 4 tetravalent virus mixture in Aedes aegypti by real-time reverse transcriptase-polymerase chain reaction. Am J Trop Med Hyg 70: 8997. [Google Scholar]
  16. Higgs S, Vanlandingham DL, Klingler KA, McElroy KL, McGee CE, Harrington L, Lang J, Monath TP, Guirakhoo F, , 2006. Growth characteristics of ChimeriVax-Den vaccine viruses in Aedes aegypti and Aedes albopictus from Thailand. Am J Trop Med Hyg 75: 986993. [Google Scholar]
  17. Sardelis MR, Edelman R, Klein TA, Innis BL, Putnak JR, Jones JW, Turell MJ, , 2000. Limited potential for transmission of live dengue virus vaccine candidates by Aedes aegypti and Aedes albopictus . Am J Trop Med Hyg 62: 698701.[Crossref] [Google Scholar]
  18. Troyer JM, Hanley KA, Whitehead SS, Strickman D, Karron RA, Durbin AP, Murphy BR, , 2001. A live attenuated recombinant dengue-4 virus vaccine candidate with restricted capacity for dissemination in mosquitoes and lack of transmission from vaccinees to mosquitoes. Am J Trop Med Hyg 65: 414419.[Crossref] [Google Scholar]
  19. Black WC, 4th Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernández-Salas I, de Lourdes Muñoz M, Farfán-Alé JA, Olson KE, Beaty BJ, , 2002. Flavivirus susceptibility in Aedes aegypti . Arch Med Res 33: 379388.[Crossref] [Google Scholar]
  20. Brault AC, Kinney RM, Maharaj PD, Green EN, Reisen WK, Huang CY-H, , 2011. Replication of the primary dog kidney-53 dengue 2 virus vaccine candidate in Aedes aegypti is modulated by a mutation in the 5′ untranslated region and amino acid substitutions in nonstructural proteins 1 and 3. Vector Borne Zoonotic Dis 11: 683689.[Crossref] [Google Scholar]
  21. Mitchell CJ, McLean RG, Nasci RS, Crans WJ, Smith GC, Caccamise DF, , 1993. Susceptibility parameters of Aedes albopictus to per oral infection with eastern equine encephalitis virus. J Med Entomol 30: 233235.[Crossref] [Google Scholar]
  22. Miller BR, Beaty BJ, Aitken TH, Eckels KH, Russell PK, , 1982. Dengue-2 vaccine: oral infection, transmission, and lack of evidence for reversion in the mosquito, Aedes aegypti . Am J Trop Med Hyg 31: 12321237.[Crossref] [Google Scholar]
  23. Richards SL, Pesko K, Alto BW, Mores CN, , 2007. Reduced infection in mosquitoes exposed to blood meals containing previously frozen flaviviruses. Virus Res 129: 224227.[Crossref] [Google Scholar]
  24. Weger-Lucarelli J, 2016. Vector competence of American mosquitoes for three strains of Zika virus. PLoS Negl Trop Dis 10: e0005101.[Crossref] [Google Scholar]
  25. Huang CY, Butrapet S, Pierro DJ, Chang GJ, Hunt AR, Bhamarapravati N, Gubler DJ, Kinney RM, , 2000. Chimeric dengue type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus vaccine. J Virol 74: 30203028.[Crossref] [Google Scholar]
  26. Lambrechts L, Fansiri T, Pongsiri A, Thaisomboonsuk B, Klungthong C, Richardson JH, Ponlawat A, Jarman RG, Scott TW, , 2012. Dengue-1 virus clade replacement in Thailand associated with enhanced mosquito transmission. J Virol 86: 18531861.[Crossref] [Google Scholar]
  27. Alto BW, Smartt CT, Shin D, Bettinardi D, Malicoate J, Anderson SL, Richards SL, , 2014. Susceptibility of Florida Aedes aegypti and Aedes albopictus to dengue viruses from Puerto Rico. J Vector Ecol 39: 406413.[Crossref] [Google Scholar]
  28. Lambrechts L, Scott TW, Gubler DJ, , 2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4: e646.[Crossref] [Google Scholar]
  29. Vazeille M, Rosen L, Mousson L, Failloux AB, , 2003. Low oral receptivity for dengue type 2 viruses of Aedes albopictus from southeast Asia compared with that of Aedes aegypti . Am J Trop Med Hyg 68: 203208. [Google Scholar]
  30. Whitehorn J, 2015. Comparative susceptibility of Aedes albopictus and Aedes aegypti to dengue virus infection after feeding on blood of viremic humans: implications for public health. J Infect Dis 212: 11821190.[Crossref] [Google Scholar]
  31. Bian G, Xu Y, Lu P, Xie Y, Xi Z, , 2010. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti . PLoS Pathog 6: e1000833.[Crossref] [Google Scholar]
  32. Mousson L, Martin E, Zouache K, Madec Y, Mavingui P, Failloux AB, , 2010. Wolbachia modulates Chikungunya replication in Aedes albopictus . Mol Ecol 19: 19531964.[Crossref] [Google Scholar]
  33. Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux AB, , 2012. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus . PLoS Negl Trop Dis 6: e1989.[Crossref] [Google Scholar]
  34. Raquin V, Valiente Moro C, Saucereau Y, Tran FH, Potier P, Mavingui P, , 2015. Native Wolbachia from Aedes albopictus blocks Chikungunya virus infection in cellulo. PLoS One 10: e0125066.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0185
Loading
/content/journals/10.4269/ajtmh.17-0185
Loading

Data & Media loading...

  • Received : 09 Mar 2017
  • Accepted : 25 Jun 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error