1921
Volume 98, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

To contribute to a better understanding of the molecular bases of the circadian biological rhythms in Chagas disease vectors, in this work we identified functional domains in the sequences of the clock protein PERIOD (PER) in and and analyzed the expression of the PER gene at mRNA level in . The PER protein sequences comparison among these species and those from other insects revealed that the most similar regions are the PAS domains and the most variable is the COOH-terminal. On the other hand, the gene expression in nervous tissue of adult varies with a daily canonical rhythm in groups of individuals maintained under photoperiod (light/dark, LD) and constant dark (DD), showing a significant peak of expression at sunset. The pattern of expression detected in LD persists under the DD condition. As expected, in the group maintained in constant light (LL), no daily increase was detected in transcript level. Besides, the presence of transcript in different tissues of adult individuals and in nervous tissue of nymphs evidenced activity of peripheral clocks in adults and activity of the central clock in nymphs of .

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0147
2017-12-18
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/2/tpmd170147.html?itemId=/content/journals/10.4269/ajtmh.17-0147&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2015. Chagas Disease (American Tripanosomiasis). Fact sheet 340. Available at: http://www.who.int/medicacentre/factsheets/fs340/en/. Updated March 2017.
  2. Carcavallo RU, Galíndez Girón I, Jurberg J, Lent H, , 1999. Phylogeny of the Triatominae. Atlas of Chagas Disease Vectors in the Americas, Vol. 3. Rio de Janeiro, Brazil: Fiocruz, 925969.
  3. Tarleton RL, Gürtler RE, Urbina JA, Ramsey J, Viotti R, , 2014. Chagas disease and the London declaration on neglected tropical diseases. PLoS Negl Trop Dis 8: e3219. [Google Scholar]
  4. Mougabure-Cueto G, Picollo MI, , 2015. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop 149: 7085. [Google Scholar]
  5. Glossop NR, Hardin PE, , 2002. Central and peripheral circadian oscillator mechanisms in flies and mammals. J Cell Sci 115: 33693377. [Google Scholar]
  6. Boothroyd C, Wijnen H, Naef F, Saez L, Young LW, , 2007. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet 3: e54. [Google Scholar]
  7. Xu K, Zheng X, Sehgal A, , 2008. Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8: 289300. [Google Scholar]
  8. Levine JD, Funes P, Dowse HB, Hall JC, , 2002. Resetting the circadian clock by social experience in Drosophila melanogaster. Science 298: 20102012. [Google Scholar]
  9. Hardin PE, , 2011. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv Genet 74: 142158. [Google Scholar]
  10. Ampleford Davey EJ, Davey KG, , 1989. Egg laying in the insect Rhodnius prolixus is timed in a circadian fashion. J Insect Physiol 35: 183187. [Google Scholar]
  11. Barrozo RB, Schilman PE, Minoli SA, Lazzari CR, , 2004. Daily rhythms in disease-vector insects. Biol Rhythm Res 35: 7992. [Google Scholar]
  12. Lazzari CR, , 1991. Circadian rhythm of egg hatching in Triatoma infestans (Hemiptera: Reduviidae). J Med Entomol 28: 740741. [Google Scholar]
  13. Lazzari CR, , 1992. Circadian organization of locomotion activity in the haematophagous bug Triatoma infestans. J Insect Physiol 38: 895903. [Google Scholar]
  14. Minoli SA, Lazzari CR, , 2003. Chronobiological basis of thermopreference in the haematophagous bug Triatoma infestans. J Insect Physiol 49: 927932. [Google Scholar]
  15. Lorenzo Figueiras AN, Kenigsten A, Lazzari CR, , 1994. Aggregation in the haematophagous bug Triatoma infestans: chemical signals and temporal pattern. J Insect Physiol 40: 311316. [Google Scholar]
  16. Minoli SA, Baraballe S, Lorenzo Figueiras AN, , 2007. Daily rhythm of aggregation in the haematophagous bug Triatoma infestans (Heteroptera: Reduviidae). Mem Inst Oswaldo Cruz 102: 449454. [Google Scholar]
  17. Lorenzo MG, Lazzari CR, , 1998. Activity pattern in relation to refuge exploitation and feeding in Triatoma infestans (Hemiptera: Reduviidae). Acta Trop 70: 163170. [Google Scholar]
  18. Steel CGH, Vafopoulou X, , 2006. Circadian orchestration of developmental hormones in the insect, Rhodnius prolixus. Comp Biochem Physiol A Mol Integr Physiol 144: 351364. [Google Scholar]
  19. Helfrich-Förster C, , 2004. The circadian clock in the brain: a structural and functional comparison between mammals and insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190: 601613. [Google Scholar]
  20. Vafopoulou X, Terry KL, Steel CG, , 2010. The circadian timing system in the brain of the fifth larval instar of Rhodnius prolixus (Hemiptera). J Comp Neurol 518: 12641282. [Google Scholar]
  21. Vafopoulou X, Steel CG, , 2014. Synergistic induction of the clock protein PERIOD by insulin-like peptide and prothoracicotropic hormone in Rhodnius prolixus (Hemiptera): implications for convergence of hormone signaling pathways. Front Physiol 5: 112. [Google Scholar]
  22. Stroppa MM, Carriazo CS, Soria N, Pereira R, Gerez de Burgos NM, , 2008. Differential tissue and flight developmental expression of glycerol-3-phosphate dehydrogenase isozymes in the Chagas disease vector Triatoma infestans. Am J Trop Med Hyg 79: 2835. [Google Scholar]
  23. Stroppa MM, Lagunas MS, Carriazo CS, García BA, Iraola G, Panzera Y, Gerez de Burgos NM, , 2013. Differential expression of glycerol-3-phosphate dehydrogenase isoforms in flight muscles in the Chagas disease vector Triatoma infestans (Hemiptera, Reduviidae). Am J Trop Med Hyg 88: 11461151. [Google Scholar]
  24. Stroppa MM, Carriazo CS, Gerez de Burgos NM, Garcia BA, , 2014. Daily variations in the glycerol-3-phosphate dehydrogenase isoforms expression in Triatoma infestans flight muscles. Am J Trop Med Hyg 91: 399405. [Google Scholar]
  25. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ, , 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 33893402. [Google Scholar]
  26. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, , 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 27252729. [Google Scholar]
  27. Colot HV, Hall JC, Rosbash M, , 1988. Interspecific comparison of the period gene of Drosophila reveals large blocks of non-conserved coding DNA. EMBO J 7: 39293937. [Google Scholar]
  28. Coyne JA, , 1992. Genetics and speciation. Nature 355: 511515. [Google Scholar]
  29. Saez L, Young MW, , 1996. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 17: 911920. [Google Scholar]
  30. Ikeno T, Numata H, Goto SG, , 2008. Molecular characterization of the circadian clock genes in the bean bug, Riptortus pedestris, and their expression patterns under long-and short-day conditions. Gene 419: 5661. [Google Scholar]
  31. Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Reppert SM, , 1997. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19: 12611269. [Google Scholar]
  32. Gu YZ, Hogenesch JB, Bradfield CA, , 2000. The PAS superfamily: sensors of environmental and developmental signals. Annu Rev Pharmacol Toxicol 40: 519561. [Google Scholar]
  33. Rosato E, Kyriacou CP, , 2006. Analysis of locomotor activity rhythms in Drosophila. Nat Protoc 1: 559568. [Google Scholar]
  34. Grosso CG, Blariza MJ, Mougabure-Cueto G, Picollo MI, García BA, , 2016. Identification of three cytochrome P450 genes in the Chagas’ disease vector Triatoma infestans: expression analysis in deltamethrin susceptible and resistant populations. Infect Genet Evol 44: 459470. [Google Scholar]
  35. Yang YY, Liu Y, Teng HJ, Sauman I, Sehnal F, Lee HJ, , 2010. Circadian control of permethrin-resistance in the mosquito Aedes aegypti. J Insect Physiol 56: 12191223. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0147
Loading
/content/journals/10.4269/ajtmh.17-0147
Loading

Data & Media loading...

  • Received : 24 Feb 2017
  • Accepted : 31 Oct 2017
  • Published online : 18 Dec 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error