Volume 97, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Rodents are the main reservoir animals of leptospirosis. In this study, we characterized and quantified the urinary excretion dynamics of by infected with 2 × 10 virulent serogroup Ballum. Each micturition was collected separately in metabolic cages, at 12 time points from 7 to 117 days post-infection (dpi). We detected in all urine samples collected (up to 8 per time point per mouse) proving that excretion is continuous with ca. 90% live Ballum, revealed by viability quantitative polymerase chain reaction. Microscopic visualization by Live/Dead fluorescence confirmed this high proportion of live bacteria and demonstrated that Ballum are excreted, at least partly, as bacterial aggregates. We observed two distinct phases in the excretion dynamics, first an increase in concentration shed in the urine between 7 and 63 dpi followed by a plateau phase from 63 dpi onward, with up to 3 × 10 per mL of urine. These two phases seem to correspond to progressive colonization of renal tubules first, then to stable cell survival and maintenance in kidneys. Therefore, chronically infected adult mice are able to contaminate the environment via urine at each micturition event throughout their lifetime. Because excretion reached its maximum 2 months after infection, older rodents have a greater risk of contaminating their surrounding environment.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Bharti AR, , 2003. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 3: 757771.[Crossref] [Google Scholar]
  2. Costa F, Hagan JE, Calcagno J, Kane M, Torgerson P, Martinez-Silveira MS, Stein C, Abela-Ridder B, Ko AI, , 2015. Global morbidity and mortality of leptospirosis: a systematic review. PLoS Negl Trop Dis 9: e0003898.[Crossref] [Google Scholar]
  3. Ko AI, Goarant C, Picardeau M, , 2009. Leptospira: the dawn of the molecular genetics era for an emerging zoonotic pathogen. Nat Rev Microbiol 7: 736747.[Crossref] [Google Scholar]
  4. Ido Y, Hoki R, Ito H, Wani H, , 1917. The rat as a carrier of Spirochaeta Icterohaemorrhaguae, the causative agent of Weil’s disease (Spirochaetosis Icterohaemorrhagica). J Exp Med 26: 341353.[Crossref] [Google Scholar]
  5. Babudieri B, , 1958. Animal reservoirs of leptospires. Ann N Y Acad Sci 70: 393413.[Crossref] [Google Scholar]
  6. Perez J, Goarant C, , 2010. Rapid Leptospira identification by direct sequencing of the diagnostic PCR products in New Caledonia. BMC Microbiol 10: 325.[Crossref] [Google Scholar]
  7. Barragan V, Nieto N, Keim P, Pearson T, , 2017. Meta-analysis to estimate the load of Leptospira excreted in urine: beyond rats as important sources of transmission in low-income rural communities. BMC Res Notes 10: 71.[Crossref] [Google Scholar]
  8. Monahan AM, Callanan JJ, Nally JE, , 2008. Proteomic analysis of Leptospira being shed in urine of chronically infected hosts. Infect Immun 76: 49524958.[Crossref] [Google Scholar]
  9. Nally JE, Chow E, Fishbein MC, Blanco DR, Lovett MA, , 2005. Changes in Lipopolysaccharide O antigen distinguish acute versus chronic Leptospira interrogans infections . Infect Immun 73: 32513260.[Crossref] [Google Scholar]
  10. Rojas P, Monahan AM, Schuller S, Miller IS, Markey BK, Nally JE, , 2010. Detection and quantification of leptospires in urine of dogs: a maintenance host for the zoonotic disease leptospirosis. Eur J Clin Microbiol Infect Dis 29: 13051309.[Crossref] [Google Scholar]
  11. Costa F, Wunder EA, Jr De Oliveira D, Bisht V, Rodrigues G, Reis MG, Ko AI, Begon M, Childs JE, , 2015. Patterns in Leptospira shedding in Norway rats (Rattus norvegicus) from Brazilian slum communities at high risk of disease transmission. PLoS Negl Trop Dis 9: e0003819.[Crossref] [Google Scholar]
  12. Thiermann AB, , 1981. The Norway rat as a selective chronic carrier of Leptospira icterohaemorrhagiae . J Wildl Dis 17: 3943.[Crossref] [Google Scholar]
  13. Perez J, Brescia F, Becam J, Mauron C, Goarant C, , 2011. Rodent abundance dynamics and leptospirosis carriage in an area of hyper-endemicity in New Caledonia. PLoS Negl Trop Dis 5: e1361.[Crossref] [Google Scholar]
  14. Richer L, Potula HH, Melo R, Vieira A, Gomes-Solecki M, , 2015. A mouse model for sublethal leptospira infection. Infect Immun 83: 46934700.[Crossref] [Google Scholar]
  15. Lau CL, Skelly C, Dohnt M, Smythe LD, , 2015. The emergence of Leptospira borgpetersenii serovar Arborea in Queensland, Australia, 2001 to 2013. BMC Infect Dis 15: 230.[Crossref] [Google Scholar]
  16. Herrmann-Storck C, Postic D, Lamaury I, Perez JM, , 2008. Changes in epidemiology of leptospirosis in 2003–2004, a two El Nino Southern Oscillation period, Guadeloupe archipelago, French West Indies. Epidemiol Infect 136: 14071415. [Google Scholar]
  17. Faine S, Adler B, Bolin C, Perolat P, , 1999. Leptospira and Leptospirosis, 2nd edition. Melbourne, Australia: MedSci.
  18. Bonilla-Santiago R, Nally JE, , 2011. Rat model of chronic leptospirosis. Curr Protoc Microbiol 20: 12E.3.1–12E.3.8.
  19. Stoddard RA, Gee JE, Wilkins PP, McCaustland K, Hoffmaster AR, , 2009. Detection of pathogenic Leptospira spp. through TaqMan polymerase chain reaction targeting the LipL32 gene. Diagn Microbiol Infect Dis 64: 247255.[Crossref] [Google Scholar]
  20. Costa P, Ferreira AS, Amaro A, Albuquerque T, Botelho A, Couto I, Cunha MV, Viveiros M, Inacio J, , 2013. Enhanced detection of tuberculous mycobacteria in animal tissues using a semi-nested probe-based real-time PCR. PLoS One 8: e81337.[Crossref] [Google Scholar]
  21. Ferreira AS, Costa P, Rocha T, Amaro A, Vieira ML, Ahmed A, Thompson G, Hartskeerl RA, Inacio J, , 2014. Direct detection and differentiation of pathogenic leptospira species using a multi-gene targeted real time PCR approach. PLoS One 9: e112312.[Crossref] [Google Scholar]
  22. Bae S, Wuertz S, , 2009. Discrimination of viable and dead fecal Bacteroidales bacteria by quantitative PCR with propidium monoazide. Appl Environ Microbiol 75: 29402944.[Crossref] [Google Scholar]
  23. Peterson BW, Sharma PK, van der Mei HC, Busscher HJ, , 2012. Bacterial cell surface damage due to centrifugal compaction. Appl Environ Microbiol 78: 120125.[Crossref] [Google Scholar]
  24. Vu NT, Chaturvedi AK, Canfield DV, , 1999. Genotyping for DQA1 and PM loci in urine using PCR-based amplification: effects of sample volume, storage temperature, preservatives, and aging on DNA extraction and typing. Forensic Sci Int 102: 2334.[Crossref] [Google Scholar]
  25. Cannas A, ; Consortium TBt, 2009. Implications of storing urinary DNA from different populations for molecular analyses. PLoS One 4: e6985.[Crossref] [Google Scholar]
  26. Ingersoll J, Bythwood T, Abdul-Ali D, Wingood GM, Diclemente RJ, Caliendo AM, , 2008. Stability of Trichomonas vaginalis DNA in urine specimens. J Clin Microbiol 46: 16281630.[Crossref] [Google Scholar]
  27. Feng J, Wang T, Zhang S, Shi W, Zhang Y, , 2014. An optimized SYBR Green I/PI assay for rapid viability assessment and antibiotic susceptibility testing for Borrelia burgdorferi. PLoS One 9: e111809.[Crossref] [Google Scholar]
  28. R Core Team, 2014. R: A Language and Environment for Statistical Computing. Vienna, Australia: R foundation for Statistical Computing.
  29. Pinheiro JC, Bates DM, , 2000. Mixed-Effects Models in S and S-PLUS. New York, NY: Springer-Verlag.[Crossref] [Google Scholar]
  30. Akaike H, , 1974. A new look at the statistical model identification. IEEE Trans. Autom. Control 19: 716723.[Crossref] [Google Scholar]
  31. Gomes-Solecki M, Santecchia I, Werts C, , 2017. Animal models of leptospirosis: of mice and hamsters. Front Immunol 8: 58.[Crossref] [Google Scholar]
  32. Ratet G, Veyrier FJ, Fanton d’Andon M, Kammerscheit X, Nicola M-A, Picardeau M, Boneca IG, Werts C, , 2014. Live imaging of bioluminescent Leptospira interrogans in mice reveals renal colonization as a stealth escape from the blood defenses and antibiotics. PLoS Negl Trop Dis 8: e3359.[Crossref] [Google Scholar]
  33. Thibeaux R, Geroult S, Benezech C, Chabaud S, Soupé-Gilbert ME, Girault D, Bierque E, Goarant C, , 2017. Seeking the environmental source of Leptospirosis reveals durable bacterial viability in river soils. PLoS Negl Trop Dis 11: e0005414.[Crossref] [Google Scholar]
  34. Athanazio DA, Silva EF, Santos CS, Rocha GM, Vannier-Santos MA, McBride AJ, Ko AI, Reis MG, , 2008. Rattus norvegicus as a model for persistent renal colonization by pathogenic Leptospira interrogans . Acta Trop 105: 176180.[Crossref] [Google Scholar]
  35. Trueba G, Zapata S, Madrid K, Cullen P, Haake D, , 2004. Cell aggregation: a mechanism of pathogenic Leptospira to survive in fresh water. Int Microbiol 7: 3540. [Google Scholar]
  36. Brihuega B, Samartino L, Auteri C, Venzano A, Caimi K, , 2012. In vivo cell aggregations of a recent swine biofilm-forming isolate of Leptospira interrogans strain from Argentina. Rev Argent Microbiol 44: 138143. [Google Scholar]
  37. Ristow P, Bourhy P, Kerneis S, Schmitt C, Prevost MC, Lilenbaum W, Picardeau M, , 2008. Biofilm formation by saprophytic and pathogenic leptospires. Microbiology 154: 13091317.[Crossref] [Google Scholar]
  38. Parsek MR, Singh PK, , 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57: 677701.[Crossref] [Google Scholar]
  39. Drickamer LC, , 1995. Rates of urine excretion by house mouse (Mus domesticus): differences by age, sex, social status, and reproductive condition. J Chem Ecol 21: 14811493.[Crossref] [Google Scholar]
  40. Thornley CN, Baker MG, Weinstein P, Maas EW, , 2002. Changing epidemiology of human leptospirosis in New Zealand. Epidemiol Infect 128: 2936.[Crossref] [Google Scholar]
  41. Wynwood SJ, Craig SB, Graham GC, Blair BR, Burns MA, Weier SL, Collet TA, McKay DB, , 2014. The emergence of Leptospira borgpetersenii serovar Arborea as the dominant infecting serovar following the summer of natural disasters in Queensland, Australia 2011. Trop Biomed 31: 281285. [Google Scholar]
  42. Bulach DM, , 2006. Genome reduction in Leptospira borgpetersenii reflects limited transmission potential. Proc Natl Acad Sci USA 103: 1456014565.[Crossref] [Google Scholar]
  43. Kenward MG, Roger JH, , 1997. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53: 983997.[Crossref] [Google Scholar]

Data & Media loading...

Supplemental Figures

  • Received : 14 Feb 2017
  • Accepted : 14 May 2017
  • Published online : 17 Jul 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error