Volume 97, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Well-defined locations of pemphigus cases support the hypothesis of environmental factors’ involvement in its etiopathogenesis; however, these foci have never been described using specialized geographical tools. This is the first report to geo-reference pemphigus cases in a high-prevalence Brazilian region using geographic information systems. We aimed to report the spatio-temporal behavior of pemphigus foliaceus (PF) and vulgaris (PV) in southeastern Brazil, over the last five decades to describe geographical clusters, as well as to characterize the land use in the city with the highest number of cases. Patients were identified from 1965 to 2014. Maps were developed using ArcGIS software and organized into decades from 1965 to 2014. Ribeirão Preto was identified as the city with the greatest number of cases. Land use was analyzed within a 2 km-buffer surrounding the residence of each patient. A total of 426 cases of pemphigus were identified. PF was the predominant form (285 cases); notwithstanding, the number of new cases of PV rose, overtaking the number of new cases of PF in the last decade studied. Agricultural area (42%) and exposed soil (33.2%) are the most predominant land uses in Ribeirão Preto surrounding patients’ residences. This study shows high-confidence geographical foci of PF and PV, as well as provides evidence of an increase of both clinical forms over the last five decades. All cases of PV and PF are in proximity to rivers and agricultural areas which reinforce the hypothesis that environmental factors play a role in pemphigus etiopathogenesis.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Tim US, , 1995. The application of GIS in environmental health sciences: opportunities and limitations. Environ Res 71: 7588. [Google Scholar]
  2. Fletcher-Lartey SM, Caprarelli G, , 2016. Application of GIS technology in public health: successes and challenges. Parasitology 143: 401415. [Google Scholar]
  3. Hammers CM, Stanley JR, , 2016. Mechanisms of disease: pemphigus and bullous pemphigoid. Annu Rev Pathol 11: 175197. [Google Scholar]
  4. Ruocco V, Ruocco E, Lo Schiavo A, Brunetti G, Guerrera LP, Wolf R, , 2013. Pemphigus: etiology, pathogenesis, and inducing or triggering factors: facts and controversies. Clin Dermatol 31: 374381. [Google Scholar]
  5. Alpsoy E, Akman-Karakas A, Uzun S, , 2015. Geographic variations in epidemiology of two autoimmune bullous diseases: pemphigus and bullous pemphigoid. Arch Dermatol Res 307: 291298. [Google Scholar]
  6. Chacón GR, Ortega-Loayza AG, Cyr RM, , 2012. Historical notes on endemic pemphigus in South America. Int J Dermatol 51: 477481. [Google Scholar]
  7. Abréu-Vélez AM, Reason IJ, Howard MS, Roselino AM, , 2010. Endemic pemphigus foliaceus over a century: part I. N Am J Med Sci 2: 5159. [Google Scholar]
  8. Diaz LA, Sampaio SA, Rivitti EA, Martins CR, Cunha PR, Lombardi C, Almeida FA, Castro RM, Macca ML, Lavrado C, , 1989. Endemic pemphigus foliaceus (Fogo Selvagem): II. Current and historic epidemiologic studies. J Invest Dermatol 92: 412. [Google Scholar]
  9. Abréu-Velez AM, Hashimoto T, Bollag WB, Tobón Arroyave S, Abrèu-Velez CE, Londoño ML, Montoya F, Beutner EH, , 2003. A unique form of endemic pemphigus in northern Colombia. J Am Acad Dermatol 49: 599608. [Google Scholar]
  10. Ortega-Loayza AG, Ramos W, Gutierrez EL, Jimenez G, Rojas I, Galarza C, , 2013. Endemic pemphigus foliaceus in the Peruvian Amazon. Clin Exp Dermatol 38: 594600. [Google Scholar]
  11. Aldama A, Alvarenga V, Arguello G, Mendoza G, Rivelli V, , 1996. Pemphigus foliaceus: statistical observations in Paraguay from 1990 to 1995. Med Cutan Ibero Lat Am 24: 235240. [Google Scholar]
  12. González F, Sáenz AM, Cirocco A, Tacaronte IM, Fajardo JE, Calebotta A, , 2006. Endemic pemphigus foliaceus in Venezuela: report of two children. Pediatr Dermatol 23: 132135. [Google Scholar]
  13. Saleh MA, , 2015. Pemphigus in the Arab world. J Dermatol 42: 2730. [Google Scholar]
  14. Bastuji-Garin S, Souissi R, Blum L, Turki H, Nouira R, Jomaa B, Zahaf A, Ben Osman A, Mokhtar I, Fazaa B, , 1995. Comparative epidemiology of pemphigus in Tunisia and France: unusual incidence of pemphigus foliaceus in young Tunisian women. J Invest Dermatol 104: 302305. [Google Scholar]
  15. Hans-Filho G, 1996. An active focus of high prevalence of fogo selvagem on an Amerindian reservation in Brazil. Cooperative Group on Fogo Selvagem Research. J Invest Dermatol 107: 6875. [Google Scholar]
  16. Friedman H, Campbell I, Rocha-Alvarez R, Ferrari I, Coimbra CE, Moraes JR, Flowers NM, Stastny P, Fernandez-Viña M, Olague-Alcala M, , 1995. Endemic pemphigus foliaceus (fogo selvagem) in native Americans from Brazil. J Am Acad Dermatol 32: 949956. [Google Scholar]
  17. Chagas AC, Ivo ML, Honer MR, Correa Filho R, , 2005. Situation of endemic pemphigus foliaceus in Mato Grosso do Sul, Brazil, 1990–1999. Rev Lat Am Enfermagem 13: 274276. [Google Scholar]
  18. Aoki V, Millikan RC, Rivitti EA, Hans-Filho G, Eaton DP, Warren SJ, Li N, Hilario-Vargas J, Hoffmann RG, Diaz LA, Cooperative Group for Fogo Selvagem Research; , 2004. Environmental risk factors in endemic pemphigus foliaceus (fogo selvagem). J Investig Dermatol Symp Proc 9: 3440. [Google Scholar]
  19. Sinha AA, , 2011. The genetics of pemphigus. Dermatol Clin 29: 381391. [Google Scholar]
  20. Pavoni DP, Roxo VM, Marquart Filho A, Petzl-Erler ML, , 2003. Dissecting the associations of endemic pemphigus foliaceus (fogo selvagem) with HLA-DRB1 alleles and genotypes. Genes Immun 4: 110116. [Google Scholar]
  21. Petzl-Erler ML, Santamaria J, , 1989. Are HLA class II genes controlling susceptibility and resistance to Brazilian pemphigus foliaceus (fogo selvagem)? Tissue Antigens 33: 408414. [Google Scholar]
  22. Brochado MJ, Nascimento DF, Campos W, Deghaide NH, Donadi EA, Roselino AM, , 2016. Differential HLA class I and class II associations in pemphigus foliaceus and pemphigus vulgaris patients from a prevalent southeastern Brazilian region. J Autoimmun 72: 1924. [Google Scholar]
  23. Abréu-Vélez AM, Roselino AM, Howard MS, Reason IJ, , 2010. Endemic pemphigus over a century: part II. N Am J Med Sci 2: 114125. [Google Scholar]
  24. Vieira J, , 1940. Pemphigus foliaceus (fogo selvagem)–an endemic disease in the state of Sao Paulo (Brazil). Arch Derm Syphilol 41: 858863. [Google Scholar]
  25. Aranha-Campos J, , 1942. Pênfigo Foliáceo (Fogo selvagem): Aspectos Clínicos e Epidemiológicos. Sao Paulo, Brazil: Comp melhoramento.
  26. Proença NG, , 1977. The declining incidence of pemphigus foliaceus in the state of São Paulo (Brazil). Rev Paul Med 89: 97100. [Google Scholar]
  27. Rocha-Alvarez R, Ortega-Loayza AG, Friedman H, Campbell I, Aoki V, Rivitti EA, Dasher D, Li N, Diaz LA, Cooperative Group on Fogo Selvagem Research; , 2007. Endemic pemphigus vulgaris. Arch Dermatol 143: 895899. [Google Scholar]
  28. Gonçalves GA, Brito MM, Salathiel AM, Ferraz TS, Alves D, Roselino AM, , 2011. Incidence of pemphigus vulgaris exceeds that of pemphigus foliaceus in a region where pemphigus foliaceus is endemic: analysis of a 21-year historical series. An Bras Dermatol 86: 11091112. [Google Scholar]
  29. Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), 2013. Uso e cobertura das terras da Região Nordeste do Estado de São Paulo. Available at: http://www.nordestesp.cnpm.embrapa.br/conteudo/AreaEstudo.htm. Accessed March 22, 2017.
  30. Prefeitura Municipal de Ribeirão Preto, 2016. Conheça Ribeirão. Available at: http://www.ribeiraopreto.sp.gov.br/crp/dados/local/i01local.php. Accessed March 22, 2017.
  31. World Health Organization, 2000. Methods of Assessing Risk to Health from Exposure to Hazards Released from Waste Landfills. (EUR/00/5026441). Available at: http://apps.who.int/iris/bitstream/10665/108362/1/E71393.pdf. Accessed March 22, 2017.
  32. Instituto Brasileiro de Geografia e Estatística (IBGE), 2013. Recursos naturais: Manual Técnico de Uso da Terra. Geociências. Available at: http://www.ibge.gov.br/home/geociencias/recursosnaturais/usodaterra/manual_usodaterra.shtm. Accessed March 22, 2017.
  33. Pires CA, Viana VB, Araújo FC, Müller SF, Oliveira MS, Carneiro FR, , 2014. Evaluation of cases of pemphigus vulgaris and pemphigus foliaceus from a reference service in Pará state, Brazil. An Bras Dermatol 89: 556561. [Google Scholar]
  34. Tolezano JE, , 1994. Ecoepidemiological aspects of American cutaneous leishmaniasis in the state of São Paulo, Brazil. Mem Inst Oswaldo Cruz 89: 427434. [Google Scholar]
  35. Qian Y, Culton DA, Jeong JS, Trupiano N, Valenzuela JG, Diaz LA, , 2016. Non-infectious environmental antigens as a trigger for the initiation of an autoimmune skin disease. Autoimmun Rev 15: 923930. [Google Scholar]
  36. Zaraa I, Boussoffara T, Ben Ahmed M, Marzouki S, Ben Hassouna N, Sellami MK, Makni S, Ben Osman A, Louzir H, Mokni M, , 2012. Exposure to Phlebotomus papatasi and/or Leishmania major: possible etiologic link to Tunisian pemphigus. J Invest Dermatol 132: 479482. [Google Scholar]
  37. Vanzela LS, Hernandez FBT, Franco RAM, , 2010. Influência do uso e ocupação do solo nos recursos hídricos do Córrego Três Barras, Marinópolis. Rev Bras Eng Agric Ambient 14: 5564. [Google Scholar]
  38. Merten GH, Minella JP, , 2012. Qualidade da água em bacias hidrográficas rurais: um desafio atual para a sobrevivência futura. Agroecologia e Desenvolvimento Rural Sustentável 3: 3338. [Google Scholar]
  39. Xiao-long W, Yong-long L, Jing-Yi H, Gui-zhen H, Tie-yu W, , 2007. Identification of anthropogenic influences on water quality of rivers in Taihu watershed. J Environ Sci (China) 19: 475481. [Google Scholar]
  40. Alves EC, Silva CF, Cossich ES, Tavares CRG, Souza-filho EE, Carniel A, , 2008. Avaliação da qualidade da água da bacia do rio Pirapó – Maringá, Estado do Paraná, por meio de parâmetros físicos, químicos e microbiológicos. Acta Sci Technol 30: 3948. [Google Scholar]
  41. Alves RIS, Cardoso OO, Tonani KAA, Julião FC, Trevilato TMB, Segura-Muñoz SI, , 2013. Water quality of the Ribeirão Preto stream, a watercourse under anthropogenic influence in the southeast of Brazil. Environ Monit Assess 185: 11511161. [Google Scholar]
  42. Wohl Y, Brenner S, , 2003. Pemphigus in Israel–an epidemiologic analysis of cases in search of risk factors. Isr Med Assoc J 5: 410412. [Google Scholar]
  43. Valikhani M, Kavusi S, Chams-Davatchi C, Daneshpazhooh M, Barzegari M, Ghiasi M, Abedini R, , 2007. Pemphigus and associated environmental factors: a case-control study. Clin Exp Dermatol 32: 256260. [Google Scholar]
  44. Fisher KR, Higginbotham R, Frey J, Granese J, Pillow J, Skinner RB, , 2008. Pesticide-associated pemphigus vulgaris. Cutis 82: 5154. [Google Scholar]
  45. Yazdanpanah MJ, 2011. Serum zinc and copper status in Iranian patients with pemphigus vulgaris. Int J Dermatol 50: 13431346. [Google Scholar]
  46. Javanbakht M, Daneshpazhooh M, Chams-Davatchi C, Eshraghian M, Zarei M, Chamari MMD, , 2012. Serum selenium, zinc, and copper in early diagnosed patients with pemphigus vulgaris. Iran J Public Health 41: 105109. [Google Scholar]
  47. Robledo MA, , 2012. Chronic methyl mercury poisoning may trigger endemic pemphigus foliaceus “fogo selvagem”. Med Hypotheses 78: 6066. [Google Scholar]
  48. Abréu Vélez AM, Warfvinge G, Herrera WL, Abréu Vélez CE, Montoya MF, Hardy DM, Bollag WB, Hashimoto K, , 2003. Detection of mercury and other undetermined materials in skin biopsies of endemic pemphigus foliaceus. Am J Dermatopathol 25: 384391. [Google Scholar]
  49. McCabe MJ, Lawrence DA, , 1990. The heavy metal lead exhibits B cell-stimulatory factor activity by enhancing B cell Ia expression and differentiation. J Immunol 145: 671677. [Google Scholar]
  50. McCabe MJ, Dias JA, Lawrence DA, , 1991. Lead influences translational or posttranslational regulation of Ia expression and increases invariant chain expression in mouse B cells. J Biochem Toxicol 6: 269276. [Google Scholar]
  51. Mishra KP, , 2009. Lead exposure and its impact on immune system: a review. Toxicol In Vitro 23: 969972. [Google Scholar]
  52. Serra LL, , 2015. Relação da concentração de metais pesados em amostras de água das bacias dos rios Pardo, Mogi-Guaçi, Sapucaí/Mirim e do Aquífero Guarani com a etiopatogênese dos pênfigos. Dissertação (Mestrado em Clínica Médica) – Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, 171. Available at: http://www.teses.usp.br/teses/disponiveis/17/17138/tde-05012016-112357/. Accessed March 22, 2017.
  53. Brenner S, 2001. Pemphigus vulgaris: environmental factors. Occupational, behavioral, medical, and qualitative food frequency questionnaire. Int J Dermatol 40: 562569. [Google Scholar]
  54. Michailidou EZ, Belazi MA, Markopoulos AK, Tsatsos MI, Mourellou ON, Antoniades DZ, , 2007. Epidemiologic survey of pemphigus vulgaris with oral manifestations in northern Greece: retrospective study of 129 patients. Int J Dermatol 46: 356361. [Google Scholar]
  55. Alves RI, Sampaio CF, Nadal M, Schuhmacher M, Domingo JL, Segura-Muñoz SI, , 2014. Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133: 149155. [Google Scholar]
  56. Instituto Brasileiro de Geografia e Estatística (IBGE), 2010. Indicadores demográficos: Taxa de urbanização. População e demografia. Available at: http://seriesestatisticas.ibge.gov.br/series.aspx?no=10&op=0&vcodigo=POP122&t=taxa-urbanizacao. Accessed March 22, 2017.
  57. Elias D, , 2006. Globalização e fragmentação do espaço agrícola do Brasil. Scr Nova Rev Electrónica Geogr Ciencias Soc X: 3. [Google Scholar]
  58. Silva LJ, , 1997. O conceito de espaço na epidemiologia das doenças infecciosas. Cad Saude Publica 13: 585593. [Google Scholar]

Data & Media loading...

  • Received : 10 Feb 2017
  • Accepted : 04 Aug 2017
  • Published online : 25 Sep 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error