1921
Volume 97, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

This article describes the characterization of various encapsulated formulations of benznidazole, the current first-line drug for the treatment of Chagas disease. Given the adverse effects of benznidazole, safer formulations of this drug have a great interest. In fact, treatment of Chagas disease with benznidazole has to be discontinued in as much as 20% of cases due to side effects. Furthermore, modification of delivery and formulations could have potential effects on the emergence of drug resistance. The trypanocidal activity of new nanostructured formulations of benznidazole to eliminate was studied in vitro as well as their toxicity in two cultured mammalian cell lines (HepG2 and Fibroblasts). Nanoparticles tested included nanostructured lipid carriers, solid lipid nanoparticles, liposomes, quatsomes, and cyclodextrins. The in vitro cytotoxicity of cyclodextrins–benznidazole complexes was significantly lower than that of free benznidazole, whereas their trypanocidal activity was not hampered. These results suggest that nanostructured particles may offer improved therapeutics for Chagas disease.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.17-0044
2017-11-08
2018-12-16
Loading full text...

Full text loading...

/deliver/fulltext/14761645/97/5/tpmd170044.html?itemId=/content/journals/10.4269/ajtmh.17-0044&mimeType=html&fmt=ahah

References

  1. Urbina JA, , 2015. Recent clinical trials for the etiological treatment of chronic chagas disease: advances, challenges and perspectives. J Eukaryot Microbiol 62: 149156.[Crossref] [Google Scholar]
  2. Coura JR, Albajar Viñas P, , 2010. Chagas disease: a new worldwide challenge. Nature 465: S6S7.[Crossref] [Google Scholar]
  3. Imai K, , et al., 2014. Mother-to-child transmission of congenital Chagas disease, Japan. Emerg Infect Dis 20: 146148.[Crossref] [Google Scholar]
  4. World Health Organization, 2015. Chagas Disease (American trypanosomiasis). Available at: http://www.who.int/mediacentre/factsheets/fs340/en/. Accessed.
  5. Carlier Y, Sosa-Estani S, Luquetti AO, Buekens P, , 2015. Congenital Chagas disease: an update. Mem Inst Oswaldo Cruz 110: 363368.[Crossref] [Google Scholar]
  6. Cruz OG, , 1972 Opera Omnia. Rio de Janeiro, Brazil: Impressora Brasileira.
  7. Lewis MD, Kelly JM, , 2016. Putting infection dynamics at the heart of Chagas disease. Trends Parasitol 32: 899911.[Crossref] [Google Scholar]
  8. Viotti R, , et al., 2014. Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob Agents Chemother 58: 635639.[Crossref] [Google Scholar]
  9. Workman P, White RA, Walton MI, Owen LN, Twentyman PR, , 1984. Preclinical pharmacokinetics of benznidazole. Br J Cancer 50: 291303.[Crossref] [Google Scholar]
  10. Morillo CA, , et al., 2015. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373: 12951306.[Crossref] [Google Scholar]
  11. Molina I, Salvador F, Sánchez-Montalvá A, Treviño B, Serre N, Sao Avilés A, Almirante B, , 2015. Toxic profile of benznidazole in patients with chronic Chagas disease: risk factors and comparison of the product from two different manufacturers. Antimicrob Agents Chemother 59: 61256131.[Crossref] [Google Scholar]
  12. Pinazo MJ, Muñoz J, Posada E, López-Chejade P, Gállego M, Ayala E, Del Cacho E, Soy D, Gascon J, , 2010. Tolerance of benznidazole in treatment of Chagas’ disease in adults. Antimicrob Agents Chemother 54: 48964899.[Crossref] [Google Scholar]
  13. González-Ramos J, Noguera-Morel L, Tong HY, Ramírez E, Ruiz-Bravo E, Bellón T, Cabañas R, Cachafeiro L, Herranz-Pinto P, , 2016. Two cases of overlap severe cutaneous adverse reactions to benznidazole treatment for asymptomatic Chagas disease in a nonendemic country. Br J Dermatol 175: 604607.[Crossref] [Google Scholar]
  14. Bermudez J, Davies C, Simonazzi A, Pablo J, Palma S, , 2016. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop 156: 116.[Crossref] [Google Scholar]
  15. Molina I, , et al., 2014. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N Engl J Med 370: 18991908.[Crossref] [Google Scholar]
  16. Francisco AF, Lewis MD, Jayawardhana S, Taylor MC, Chatelain E, Kelly JM, , 2015. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob Agents Chemother 59: 46534661.[Crossref] [Google Scholar]
  17. Coura JR, de Castro SL, , 2002. A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz 97: 324.[Crossref] [Google Scholar]
  18. Molina J, Urbina J, Gref R, Brener Z, Rodrigues JM, Jr, 2001. Cure of experimental Chagas’ disease by the bis-triazole DO870 incorporated into “stealth” polyethyleneglycol-polylactide nanospheres. J Antimicrob Chemother 47: 101104.[Crossref] [Google Scholar]
  19. Morilla MJ, Benavidez P, Lopez MO, Bakas L, Romero EL, , 2002. Development and in vitro characterisation of a benznidazole liposomal formulation. Int J Pharm 249: 8999.[Crossref] [Google Scholar]
  20. Silva JJN, Pavanelli WR, Salazar Gutierrez FR, Lima FCA, Da Silva ABF, Silva JS, Franco DW, , 2008. Complexation of the anti-Trypanosoma cruzi drug benznidazole improves solubility and efficacy. J Med Chem 51: 41044114.[Crossref] [Google Scholar]
  21. Morilla MJ, Prieto MJ, Romero EL, , 2005. Benznidazole vs benznidazole in multilamellar liposomes: how different they interact with blood components? Mem Inst Oswaldo Cruz 100: 213219.[Crossref] [Google Scholar]
  22. Scalise ML, Arrua EC, Rial MS, Esteva MI, Salomon CJ, Fichera LE, , 2016. Promising efficacy of benznidazole nanoparticles in acute Trypanosoma cruzi murine model: in-vitro and in-vivo studies. Am J Trop Med Hyg 95: 388393.[Crossref] [Google Scholar]
  23. Leonardi D, Salomón CJ, Lamas MC, Olivieri AC, , 2009. Development of novel formulations for Chagas’ disease: optimization of benznidazole chitosan microparticles based on artificial neural networks. Int J Pharm 367: 140147.[Crossref] [Google Scholar]
  24. Fonseca-Berzal C, Palmeiro-Roldán R, Escario JA, Torrado S, Arán VJ, Torrado-Santiago S, Gómez-Barrio A, , 2015. Novel solid dispersions of benznidazole: preparation, dissolution profile and biological evaluation as alternative antichagasic drug delivery system. Exp Parasitol 149: 8491.[Crossref] [Google Scholar]
  25. Grillo R, Silva Melo NF, Moraes CM, Rosa AH, Frutuoso Roveda JA, Menezes CMS, Ferreira EI, Fraceto LF, , 2007. Hydroxymethylnitrofurazone:dimethyl-β-cyclodextrin inclusion complex: a physical-chemistry characterization. J Biol Phys 33: 445453.[Crossref] [Google Scholar]
  26. Maximiano FP, Costa GHY, De Sá Barreto LCL, Bahia MT, Cunha-Filho MSS, , 2011. Development of effervescent tablets containing benznidazole complexed with cyclodextrin. J Pharm Pharmacol 63: 786793.[Crossref] [Google Scholar]
  27. Lopes MS, Sales PA, Lopes AGF, Yoshida MI, da Silva THA, Romanha AJ, Alves RJ, de Oliveira RB, , 2011. The activity of a metronidazole analogue and its β-cyclodextrin complex against Trypanosoma cruzi . Mem Inst Oswaldo Cruz 106: 10551057.[Crossref] [Google Scholar]
  28. Lyra MAM, , et al., 2012. Study of benznidazole–cyclodextrin inclusion complexes, cytotoxicity and trypanocidal activity. J Incl Phenom Macrocycl Chem 73: 397404.[Crossref] [Google Scholar]
  29. Leonardi D, Bombardiere ME, Salomon CJ, , 2013. Effects of benznidazole:cyclodextrin complexes on the drug bioavailability upon oral administration to rats. Int J Biol Macromol 62: 543548.[Crossref] [Google Scholar]
  30. Nogueira D, Mitjans M, Rolim C, Vinardell M, , 2014. Mechanisms underlying cytotoxicity induced by engineered nanomaterials: a review of in vitro studies. Nanomaterials (Basel) 4: 454484.[Crossref] [Google Scholar]
  31. Foldbjerg R, Wang J, Beer C, Thorsen K, Sutherland DS, Autrup H, , 2013. Biological effects induced by BSA-stabilized silica nanoparticles in mammalian cell lines. Chem Biol Interact 204: 2838.[Crossref] [Google Scholar]
  32. Buckner FS, , 2011. Experimental chemotherapy and approaches to drug discovery for Trypanosoma cruzi infection. Adv Parasitol 75: 89119. [Google Scholar]
  33. Cabrera I, , et al., 2013. Multifunctional nanovesicle-bioactive conjugates prepared by a one-step scalable method using CO2-expanded solvents. Nano Lett 13: 37663774.[Crossref] [Google Scholar]
  34. Elizondo E, Sala S, Imbuluzqueta E, González D, Blanco-Prieto MJ, Gamazo C, Ventosa N, Veciana J, , 2011. High loading of gentamicin in bioadhesive PVM/MA nanostructured microparticles using compressed carbon-dioxide. Pharm Res 28: 309321.[Crossref] [Google Scholar]
  35. Cipolla D, Shekunov B, Blanchard J, Hickey A, , 2014. Lipid-based carriers for pulmonary products: preclinical development and case studies in humans. Adv Drug Deliv Rev 75: 5380.[Crossref] [Google Scholar]
  36. Sans-Serramitjana E, Fusté E, Martínez-Garriga B, Merlos A, Pastor M, Pedraz JL, Esquisabel A, Bachiller D, Vinuesa T, Viñas M, , 2016. Killing effect of nanoencapsulated colistin sulfate on Pseudomonas aeruginosa from cystic fibrosis patients. J Cyst Fibros 15: 611618.[Crossref] [Google Scholar]
  37. Lewinski N, Colvin V, Drezek R, , 2008. Cytotoxicity of nanoparticles. Small 4: 2649.[Crossref] [Google Scholar]
  38. Guadagnini R, , et al., 2015. Toxicity screenings of nanomaterials: challenges due to interference with assay processes and components of classic in vitro tests. Nanotoxicology 9: 1324.[Crossref] [Google Scholar]
  39. Buckner FS, Verlinde C, La Flamme AC, Van Voorhis WC, , 1996. Efficient technique for screening drugs for activity against Trypanosoma cruzi using parasites expressing beta-galactosidase. Antimicrob Agents Chemother 40: 25922597. [Google Scholar]
  40. Le-Senne A, Muelas-Serrano S, Fernández-Portillo C, Escario JA, Gómez-Barrio A, , 2002. Biological characterization of a beta-galactosidase expressing clone of Trypanosoma cruzi CL strain. Mem Inst Oswaldo Cruz 97: 11011105.[Crossref] [Google Scholar]
  41. Romanha AJ, , et al., 2010. In vitro and in vivo experimental models for drug screening and development for Chagas disease. Mem Inst Oswaldo Cruz 105: 233238.[Crossref] [Google Scholar]
  42. Martinez Diaz RA, Escario JA, Nogal Ruiz JJ, Gomez Barrio A, , 2000. Evaluation of drug activity against intracellular forms of Trypanosoma cruzi employing enzyme immunoassay. J Clin Pharm Ther 25: 4347.[Crossref] [Google Scholar]
  43. Vega C, Rolón M, Martínez-Fernández AR, Escario JA, Gómez-Barrio A, , 2005. A new pharmacological screening assay with Trypanosoma cruzi epimastigotes expressing β-galactosidase. Parasitol Res 95: 296298.[Crossref] [Google Scholar]
  44. Fonseca-Berzal C, Merchán Arenas DR, Romero Bohórquez AR, Escario JA, Kouznetsov VV, Gómez-Barrio A, , 2013. Selective activity of 2,4-diaryl-1,2,3,4-tetrahydroquinolines on Trypanosoma cruzi epimastigotes and amastigotes expressing β-galactosidase. Bioorg Med Chem Lett 23: 48514856.[Crossref] [Google Scholar]
  45. Chatelain E, , 2015. Chagas disease drug discovery: toward a new era. J Biomol Screen 20: 2235.[Crossref] [Google Scholar]
  46. Zhang JH, Chung TDOK, , 1999. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4: 6773.[Crossref] [Google Scholar]
  47. Hwang TL, Sung CT, Aljuffali IA, Chang YT, Fang JY, , 2014. Cationic surfactants in the form of nanoparticles and micelles elicit different human neutrophil responses: a toxicological study. Colloids Surf B Biointerfaces 114: 334341.[Crossref] [Google Scholar]
  48. Zingales B, Miles MA, Moraes CB, Luquetti A, Guhl F, Schijman AG, Ribeiro I, , 2014. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem Inst Oswaldo Cruz 109: 828833.[Crossref] [Google Scholar]
  49. Cal M, Ioset J-R, Fügi M, Mäser P, Kaiser M, , 2016. Assessing anti-T. cruzi candidates in vitro for sterile cidality. Int J Parasitol Drugs Drug Resist 6: 165170.[Crossref] [Google Scholar]
  50. Yang G, Lee N, Ioset NJ, Jr. 2016 Evaluation of parameters impacting drug susceptibility in intracellular Trypanosoma cruzi assay protocols. SLAS Discov 22: 125134. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.17-0044
Loading
/content/journals/10.4269/ajtmh.17-0044
Loading

Data & Media loading...

Supplemental Figure

  • Received : 17 Jan 2017
  • Accepted : 02 Jun 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error