Volume 97, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



To evaluate the potential role of s (Skuse) as a vector of Zika virus (ZIKV), colonized mosquitoes of low generation number (≤ F5) from Brazil, Houston, and the Rio Grande Valley of Texas engorged on viremic mice infected with ZIKV strains originating from Senegal, Cambodia, Mexico, Brazil, or Puerto Rico. Vector competence was established by monitoring infection, dissemination, and transmission potential after 3, 7, and 14 days of extrinsic incubation. Positive saliva samples were assayed for infectious titer. Although all three mosquito populations were susceptible to all ZIKV strains, rates of infection, dissemination, and transmission differed among mosquito and virus strains. from Salvador, Brazil, were the least efficient vectors, demonstrating susceptibility to infection to two American strains of ZIKV but failing to shed virus in saliva. Mosquitoes from the Rio Grande Valley were the most efficient vectors and were capable of shedding all three tested ZIKV strains into saliva after 14 days of extrinsic incubation. In particular, ZIKV strain DakAR 41525 (Senegal 1954) was significantly more efficient at dissemination and saliva deposition than the others tested in Rio Grande mosquitoes. Overall, our data indicate that, while is capable of transmitting ZIKV, its competence is potentially dependent on geographic origin of both the mosquito population and the viral strain.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Dick GWA, Kitchen SF, Haddow AJ, , 1952. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46: 509520.[Crossref] [Google Scholar]
  2. Fauci AS, Morens DM, , 2016. Zika virus in the Americas: yet another arbovirus threat. N Engl J Med 374: 601604.[Crossref] [Google Scholar]
  3. Weaver SC, Costa F, Garcia-Blanco MA, Ko AI, Ribeiro GS, Saade G, Shi P-Y, Vasilakis N, , 2016. Zika virus: history, emergence, biology, and prospects for control. Antiviral Res 130: 6980.[Crossref] [Google Scholar]
  4. Grard G, Caron M, Mombo IM, Nkoghe D, Mboui Ondo S, Jiolle D, Fontenille D, Paupy C, Leroy EM, , 2014. Zika virus in Gabon (Central Africa)–2007: a new threat from Aedes albopictus? PLoS Negl Trop Dis 8: e2681.[Crossref] [Google Scholar]
  5. Duffy MR, Chen T-H, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB, , 2009. Zika virus outbreak on yap island, federated states of Micronesia. N Engl J Med 360: 25362543.[Crossref] [Google Scholar]
  6. Musso D, Cao-Lormeau VM, Gubler DJ, , 2015. Zika virus: following the path of dengue and chikungunya? Lancet 386: 243244.[Crossref] [Google Scholar]
  7. Cao-Lormeau V-M, Roche C, Teissier A, Robin E, Berry A-L, Mallet H-P, Sall AA, Musso D, , 2013. Zika virus, French Polynesia, South Pacific, 2013. Emerg Infect Dis 20: 10841086.[Crossref] [Google Scholar]
  8. Jouannic J-M, Friszer S, Leparc-Goffart I, Garel C, Eyrolle-Guignot D, , 2016. Zika virus infection in French Polynesia. Lancet 387: 10511052.[Crossref] [Google Scholar]
  9. Campos GS, Bandeira AC, Sardi SI, , 2015. Zika virus outbreak, Bahia, Brazil. Emerg Infect Dis 21: 18851886.[Crossref] [Google Scholar]
  10. Zanluca C, de Melo VCA, Mosimann ALP, dos Santos GIV, dos Santos CND, Luz K, , 2015. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 110: 569572.[Crossref] [Google Scholar]
  11. Centers for Disease Control and Prevention, 2016. Countries & Territories with Active Local Zika Virus Transmission. Available at: http://www.cdc.gov/zika/geo/active-countries.html. Accessed November 14, 2016. [Google Scholar]
  12. Texas Department of State Health Services, 2016. Texas Announces Local Zika Virus Case in Rio Grande Valley. Available at: http://dshs.texas.gov/news/releases/2016/20161128.aspx. Accessed December 2, 2016. [Google Scholar]
  13. Basarab M, Bowman C, Aarons EJ, Cropley I, , 2016. Zika virus. BMJ 352: i1049.[Crossref] [Google Scholar]
  14. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodušek V, Vizjak A, Pižem J, Petrovec M, Avšič Županc T, , 2016. Zika virus associated with microcephaly. N Engl J Med 374: 951958.[Crossref] [Google Scholar]
  15. Hayes EB, , 2009. Zika virus outside Africa. Emerg Infect Dis 15: 13471350.[Crossref] [Google Scholar]
  16. Brasil P, Pereira JP, Jr Raja Gabaglia C, Damasceno L, Wakimoto M, Ribeiro Nogueira RM, Carvalho de Sequeira P, Machado Siqueira A, Abreu de Carvalho LM, Cotrim da Cunha D, Calvet GA, Neves ES, Moreira ME, Rodrigues Baião AE, Nassar de Carvalho PR, Janzen C, Valderramos SG, Cherry JD, Bispo de Filippis AM, Nielsen-Saines K, , 2016. Zika virus infection in pregnant women in Rio de Janeiro: preliminary report. N Engl J Med 375: 23212334.[Crossref] [Google Scholar]
  17. Carteaux G, Maquart M, Bedet A, Contou D, Brugières P, Fourati S, Cleret de Langavant L, de Broucker T, Brun-Buisson C, Leparc-Goffart I, Mekontso Dessap A, , 2016. Zika virus associated with meningoencephalitis. N Engl J Med 374: 15951596.[Crossref] [Google Scholar]
  18. De Paula Freitas B, de Oliveira Dias JR, Prazeres J, Sacramento GA, Ko AI, Maia M, Belfort R, , 2016. Ocular findings in infants with microcephaly associated with presumed Zika virus congenital infection in Salvador, Brazil. JAMA Ophthalmol 134: 529535.[Crossref] [Google Scholar]
  19. Mécharles S, Herrmann C, Poullain P, Tran T-H, Deschamps N, Mathon G, Landais A, Breurec S, Lannuzel A, , 2016. Acute myelitis due to Zika virus infection. Lancet 387: 148.[Crossref] [Google Scholar]
  20. Cao-Lormeau V-M, Blake A, Mons S, Lastère S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial A-L, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra J-C, Despres P, Fournier E, Mallet H-P, Musso D, Fontanet A, Neil J, Ghawché F, , 2016. Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387: 15311539.[Crossref] [Google Scholar]
  21. Paploski IAD, Prates APPB, Cardoso CW, Kikuti M, Silva MMO, Waller LA, Reis MG, Kitron U, Ribeiro GS, , 2016. Time lags between exanthematous illness attributed to Zika virus, Guillain-Barré syndrome, and microcephaly, Salvador, Brazil. Emerg Infect Dis 22: 14381444.[Crossref] [Google Scholar]
  22. World Health Organization, 2016. WHO Statement on the First Meeting of the International Health Regulations (2005) (IHR 2005) Emergency Committee on Zika Virus and Observed Increase in Neurological Disorders and Neonatal Malformations. Available at: http://www.who.int/mediacentre/news/statements/2016/1st-emergency-committee-zika/en/. Accessed December 2, 2016. [Google Scholar]
  23. Berthet N, Nakouné E, Kamgang B, Selekon B, Descorps-Declère S, Gessain A, Manuguerra J-C, Kazanji M, , 2014. Molecular characterization of three Zika flaviviruses obtained from sylvatic mosquitoes in the Central African Republic. Vector Borne Zoonotic Dis 14: 862865.[Crossref] [Google Scholar]
  24. Vasilakis N, Weaver SC, , 2017. Flavivirus transmission focusing on Zika. Curr Opin Virol 22: 3035.[Crossref] [Google Scholar]
  25. Marchette NJ, Garcia R, Rudnick A, , 1969. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg 18: 411415.[Crossref] [Google Scholar]
  26. Musso D, Gubler DJ, , 2016. Zika virus. Clin Microbiol Rev 29: 487524.[Crossref] [Google Scholar]
  27. Guerbois M, Fernandez-Salas I, Azar SR, Danis-Lozano R, Alpuche-Aranda CM, Leal G, Garcia-Malo IR, Diaz-Gonzalez EE, Casas-Martinez M, Rossi SL, Del Río-Galván SL, Sanchez-Casas RM, Roundy CM, Wood TG, Widen SG, Vasilakis N, Weaver SC, , 2016. Outbreak of Zika virus infection, Chiapas State, Mexico, 2015, and first confirmed transmission by Aedes aegypti mosquitoes in the Americas. J Infect Dis 214: 13491356.[Crossref] [Google Scholar]
  28. Ferreira-de-Brito A, Ribeiro IP, de Miranda RM, Fernandes RS, Campos SS, da Silva KAB, de Castro MG, Bonaldo MC, Brasil P, Lourenço-de-Oliveira R, , 2016. First detection of natural infection of Aedes aegypti with Zika virus in Brazil and throughout South America. Mem Inst Oswaldo Cruz 111: 655658.[Crossref] [Google Scholar]
  29. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D, , 2009. Aedes albopictus, an arbovirus vector: from the darkness to the light. Microbes Infect 11: 11771185.[Crossref] [Google Scholar]
  30. Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS, Guerbois M, Forrester N, Perng GC, Sreekumar E, Leal G, Huang J, Mukhopadhyay S, Weaver SC, , 2014. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun 5: 4084.[Crossref] [Google Scholar]
  31. Bonizzoni M, Gasperi G, Chen X, James AA, , 2013. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29: 460468.[Crossref] [Google Scholar]
  32. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S, , 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201.[Crossref] [Google Scholar]
  33. Centers for Disease Control and Prevention, 2016. Estimated Range of Aedes albopictus and Aedes aegypti in the United States. Available at: http://www.cdc.gov/zika/vector/range.html. Accessed November 27, 2016. [Google Scholar]
  34. Chouin-Carneiro T, Vega-Rua A, Vazeille M, Yebakima A, Girod R, Goindin D, Dupont-Rouzeyrol M, Lourenço-de-Oliveira R, Failloux A-B, , 2016. Differential susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika virus. PLoS Negl Trop Dis 10: e0004543.[Crossref] [Google Scholar]
  35. Di Luca M, Severini F, Toma L, Boccolini D, Romi R, Remoli ME, Sabbatucci M, Rizzo C, Venturi G, Rezza G, Fortuna C, , 2016. Experimental studies of susceptibility of Italian Aedes albopictus to Zika virus. Euro Surveill 21: 30223.[Crossref] [Google Scholar]
  36. Wong P-SJ, Li MI, Chong C-S, Ng L-C, Tan C-H, , 2013. Aedes (Stegomyia) albopictus (Skuse): a potential vector of Zika virus in Singapore. PLoS Negl Trop Dis 7: e2348.[Crossref] [Google Scholar]
  37. Roundy CM, Azar SR, Rossi SL, Huang JH, Leal G, Yun R, Fernadez-Salas I, Vitek CJ, Paploski IAD, Kitron U, Ribeiro GS, Hanley KA, Weaver SC, Vasilakis N, , 2017. Variation in Aedes aegypti competence for Zika virus transmission as a function of viral strain blood meal type and mosquito geographic origin. Emerg Infect Dis 23: 625632.[Crossref] [Google Scholar]
  38. Centers for Disease Control and Prevention (CDC), 2007. Dengue hemorrhagic fever: U.S.-Mexico border, 2005. MMWR Morb Mortal Wkly Rep 56: 785789. [Google Scholar]
  39. Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, Auguste AJ, Langsjoen RM, Paessler S, Vasilakis N, Weaver SC, , 2016. Characterization of a novel murine model to study Zika virus. Am J Trop Med Hyg 94: 13621369.[Crossref] [Google Scholar]
  40. Williams M, Mayer SV, Johnson WL, Chen R, Volkova E, Vilcarromero S, Widen SG, Wood TG, Suarez-Ognio L, Long KC, Hanley KA, Morrison AC, Vasilakis N, Halsey ES, , 2014. Lineage II of southeast Asian/American DENV-2 is associated with a severe dengue outbreak in the Peruvian Amazon. Am J Trop Med Hyg 91: 611620.[Crossref] [Google Scholar]
  41. Reed LJ, Muench H, , 1938. A simple method of estimating fifty percent endpoints. Am J Hyg 27: 493497. [Google Scholar]
  42. Yang C-F, Hou J-N, Chen T-H, Chen W-J, , 2014. Discriminable roles of Aedes aegypti and Aedes albopictus in establishment of dengue outbreaks in Taiwan. Acta Trop 130: 1723.[Crossref] [Google Scholar]
  43. Weaver SC, Lorenz LH, Scott TW, , 1993. Distribution of western equine encephalomyelitis virus in the alimentary tract of Culex tarsalis (Diptera: Culicidae) following natural and artificial blood meals. J Med Entomol 30: 391397.[Crossref] [Google Scholar]
  44. Richards SL, Pesko K, Alto BW, Mores CN, , 2007. Reduced infection in mosquitoes exposed to blood meals containing previously frozen flaviviruses. Virus Res 129: 224227.[Crossref] [Google Scholar]
  45. Weger-Lucarelli J, Rückert C, Chotiwan N, Nguyen C, Garcia Luna SM, Fauver JR, Foy BD, Perera R, Black WC, Kading RC, Ebel GD, , 2016. Vector competence of American mosquitoes for three strains of Zika virus. PLoS Negl Trop Dis 10: e0005101.[Crossref] [Google Scholar]
  46. Fourcade C, Mansuy J-M, Dutertre M, Delpech M, Marchou B, Delobel P, Izopet J, Martin-Blondel G, , 2016. Viral load kinetics of Zika virus in plasma, urine and saliva in a couple returning from Martinique, French West Indies. J Clin Virol 82: 14.[Crossref] [Google Scholar]
  47. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, Stanfield SM, Duffy MR, , 2008. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg Infect Dis 14: 12321239.[Crossref] [Google Scholar]
  48. Armstrong PM, Rico-Hesse R, , 2001. Differential susceptibility of Aedes aegypti to infection by the American and southeast Asian genotypes of dengue type 2 virus. Vector Borne Zoonotic Dis 1: 159168.[Crossref] [Google Scholar]
  49. Lambrechts L, Scott TW, Gubler DJ, , 2010. Consequences of the expanding global distribution of Aedes albopictus for dengue virus transmission. PLoS Negl Trop Dis 4: e646.[Crossref] [Google Scholar]
  50. Forrester N, Coffey L, Weaver S, , 2014. Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses 6: 39914004.[Crossref] [Google Scholar]
  51. Lounibos LP, Kramer LD, , 2016. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for chikungunya virus. J Infect Dis 214 (Suppl 5): S453S458.[Crossref] [Google Scholar]
  52. Franz A, Kantor A, Passarelli A, Clem R, , 2015. Tissue barriers to arbovirus infection in mosquitoes. Viruses 7: 37413767.[Crossref] [Google Scholar]
  53. Shan C, Xie X, Muruato AE, Rossi SL, Roundy CM, Azar SR, Yang Y, Tesh RB, Bourne N, Barrett AD, Vasilakis N, Weaver SC, Shi P-Y, , 2016. An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell Host Microbe 19: 891900.[Crossref] [Google Scholar]
  54. Gardner LM, Chen N, Sarkar S, , 2016. Global risk of Zika virus depends critically on vector status of Aedes albopictus . Lancet Infect Dis 16: 522523.[Crossref] [Google Scholar]
  55. Althouse BM, Hanley KA, , 2015. The tortoise or the hare? Impacts of within-host dynamics on transmission success of arthropod-borne viruses. Phil Trans R Soc B 370: 20140299.[Crossref] [Google Scholar]
  56. Smith DR, Carrara A-S, Aguilar PV, Weaver SC, , 2005. Evaluation of methods to assess transmission potential of Venezuelan equine encephalitis virus by mosquitoes and estimation of mosquito saliva titers. Am J Trop Med Hyg 73: 3339. [Google Scholar]
  57. Smith DR, Aguilar PV, Coffey LL, Gromowski GD, Wang E, Weaver SC, , 2006. Venezuelan equine encephalitis virus transmission and effect on pathogenesis. Emerg Infect Dis 12: 11901196.[Crossref] [Google Scholar]
  58. Styer LM, Kent KA, Albright RG, Bennett CJ, Kramer LD, Bernard KA, , 2007. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PLoS Pathog 3: e132.[Crossref] [Google Scholar]
  59. Hanley KA, Goddard LB, Gilmore LE, Scott TW, Speicher J, Murphy BR, Pletnev AG, , 2005. Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors. Vector Borne Zoonotic Dis 5: 110.[Crossref] [Google Scholar]
  60. Klowden MJ, Lea AO, , 1978. Blood meal size as a factor affecting continued host-seeking by Aedes aegypti (L.). Am J Trop Med Hyg 27: 827831.[Crossref] [Google Scholar]

Data & Media loading...

Supplemental Table

  • Received : 09 Dec 2016
  • Accepted : 22 Feb 2017
  • Published online : 08 May 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error