1921
Volume 98, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Visceral leishmaniasis (VL) caused by is a lethal disease transmitted by sand flies. Although, considered a zoonosis with dogs held as the main reservoirs, humans are also sources of infection. Therefore, control policies currently focused on dog culling may need to consider that VL and human immunodeficiency virus (HIV)/VL patients may also be infectious, contributing to transmission. Reservoir competence of patients with VL without and with HIV infection and of persons asymptomatically infected with was assessed by xenodiagnosis with the vector . Parasites in sand fly’s guts were identified by using optical microscopy and by conventional polymerase chain reaction (PCR). blood parasite burden was determined by quantitative PCR. Among the 61 participants, 27 (44%) infected sand flies as seen by microscopy or PCR. When infectiousness was assessed by microscopy, xenodiagnosis was positive in five (25%) patients not infected with HIV, whereas nine (45%) of those harboring HIV were positive. Among the 19 asymptomatic patients four (21%) infected sand flies only demonstrated by PCR. One (50%) asymptomatic patient with HIV had a positive xenodiagnosis by microscopy. 9/372 (2.4%) and 37/398 (9.2%) sand flies were infected when feeding in patients without and with HIV, respectively. Infectiousness was poorly correlated with quantitative PCR. The study shows that asymptomatic humans are capable of transmitting , that ill persons with HIV infection are more infectious to sand flies, and that humans are more important reservoirs than previously thought. This fact may be considered when designing control policies for zoonotic VL.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.16-0883
2018-01-10
2019-01-23
Loading full text...

Full text loading...

/deliver/fulltext/14761645/98/1/tpmd160883.html?itemId=/content/journals/10.4269/ajtmh.16-0883&mimeType=html&fmt=ahah

References

  1. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, , 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671. [Google Scholar]
  2. Macedo-Silva VP, 2014. Feeding preferences of Lutzomyia longipalpis (Diptera: Psychodidae), the sand fly vector, for Leishmania infantum (Kinetoplastida: Trypanosomatidae). J Med Entomol 51: 237244. [Google Scholar]
  3. Costa CH, Gomes RB, Silva MR, Garcez LM, Ramos PK, Santos RS, Shaw JJ, David JR, Maguire JH, , 2000. Competence of the human host as a reservoir for Leishmania chagasi. J Infect Dis 182: 9971000. [Google Scholar]
  4. Costa CH, 2000. Asymptomatic human carriers of Leishmania chagasi. Am J Trop Med Hyg 66: 334337. [Google Scholar]
  5. Costa CHN, Werneck GL, Rodrigues L, Santos MV, Araújo IB, Moura LS, Moreira S, Gomes RBB, Lima SS, , 2005. Household structure and urban services: neglected targets in the control of visceral leishmaniasis. Ann Trop Med Parasitol 99: 229236. [Google Scholar]
  6. Molina R, Lohse JM, Pulido F, Laguna F, López-Vélez R, Alvar J, , 1999. Infection of sand flies by humans coinfected with Leishmania infantum and human immunodeficiency virus. Am J Trop Med Hyg 60: 5153. [Google Scholar]
  7. Deane LM, Deane MP, , 1962. Visceral leishmaniasis in Brazil: geographical distribution and trnsmission. Rev Inst Med Trop Sao Paulo 4: 198212. [Google Scholar]
  8. Arce A, 2013. Re-emergence of leishmaniasis in Spain: community outbreak in Madrid, Spain, 2009 to 2012. Euro Surveill 18: 20546. [Google Scholar]
  9. Costa CHN, , 2008. Characterization and speculations on the urbanization of visceral leishmaniasis in Brazil. Cad Saude Publica 24: 29592963. [Google Scholar]
  10. Babuadze G, 2014. Epidemiology of Visceral Leishmaniasis in Georgia. PLoS Negl Trop Dis 8: e2725. [Google Scholar]
  11. Alvar J, Aparicio P, Aseffa A, Den Boer M, Cañavate C, Dedet JP, Gradoni L, Ter Horst R, López-Vélez R, Moreno J, , 2008. The relationship between leishmaniasis and AIDS: The second 10 years. Clin Microbiol Ver 21: 334359. [Google Scholar]
  12. Coura-Vital W, De Araújo VEM, Reis IA, Amancio FF, Reis AB, Carneiro M, , 2014. Prognostic factors and scoring system for death from visceral leishmaniasis: an historical cohort study in Brazil. PLoS Negl Trop Dis 8: e3374. [Google Scholar]
  13. Druzian AF, de Souza AS, de Campos DN, Croda J, Higa MG, Dorval MEC, , Pompilio MA, de Oliveira PA, Paniago AM, 2015. Risk factors for death from visceral leishmaniasis in an urban area of Brazil. PLoS Negl Trop Dis 9(8): e0003982.
  14. Belo VS, Struchiner CJ, Barbosa DS, Nascimento BWL, Horta MAP, da Silva ES, Werneck GL, , 2014. Risk factors for adverse prognosis and death in American visceral leishmaniasis: a meta-analysis. PLoS Negl Trop Dis 8: e2982. [Google Scholar]
  15. Bourgeois N, Bastien P, Reynes J, Makinson A, Rouanet I, Lachaud L, , 2010. “Active chronic visceral leishmaniasis” in HIV-1-infected patients demonstrated by biological and clinical long-term follow-up of 10 patients. HIV Med 11: 670673. [Google Scholar]
  16. Van Griensven J, Diro E, Lopez-Velez R, Boelaert M, Lynen L, Zijlstra E, Dujardin JC, Hailu A, , 2013. HIV-1 protease inhibitors for treatment of visceral leishmaniasis in HIV-co-infected individuals. Lancet Infect Dis 13: 251259. [Google Scholar]
  17. Michel G, Pomares C, Ferrua B, Marty P, , 2011. Importance of worldwide asymptomatic carriers of Leishmania infantum (L. chagasi) in human. Acta Trop 119: 6975. [Google Scholar]
  18. da Silva MRB, Stewart JM, Costa CHN, , 2005. Sensitivity of bone marrow aspirates in the diagnosis of visceral leishmaniasis. Am J Trop Med Hyg 72: 811814. [Google Scholar]
  19. Modi GB, Tesh RB, , 1983. A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. J Med Entomol 20: 568569. [Google Scholar]
  20. Brewster S, Aslett M, Barker DC, , 1998. Kinetoplast DNA Minicircle Database. Parasitol Today 14: 437438. [Google Scholar]
  21. Silva JC, Zacarias DA, Silva VC, Rolão N, Costa DL, Costa CH, , 2016. Comparison of optical microscopy and quantitative polymerase chain reaction for estimating parasitaemia in patients with kala-azar and modelling infectiousness to the vector Lutzomyia longipalpis. Mem Inst Oswaldo Cruz 111: 517522. [Google Scholar]
  22. Miller E, Warburg A, Novikov I, Hailu A, Volf P, Seblova V, Huppert A, , 2014. Quantifying the contribution of hosts with different parasite concentrations to the transmission of visceral leishmaniasis in Ethiopia. PLoS Negl Trop Dis 8: e3288. [Google Scholar]
  23. Ready PD, , 1979. Factors affecting egg production of laboratory-bred Lutzomyia longipalpis (Diptera: Psychodidae). J Med Entomol 16: 413423. [Google Scholar]
  24. Sherlock IA, , 1996. Ecological interactions of visceral leishmaniasis in the state of Bahia, Brazil. Mem Inst Oswaldo Cruz 91: 671683. [Google Scholar]
  25. Molina R, Lohse JM, Pulido F, Laguna F, López-Vélez R, Alvar J, , 1999. Infection of sand flies by humans coinfected with Leishmania infantum and human immunodeficiency virus. Am J Trop Med Hyg 60: 5153. [Google Scholar]
  26. Moreno EC, Melo MN, Lambertucci JR, Serufo JC, Andrade SR, Antunes CMF, Genaro O, Carneiro M, , 2006. Diagnosing human asymptomatic visceral leishmaniasis in an urban area of the State of Minas Gerais, using serological and molecular biology techniques. Rev Soc Bras Med Trop 39: 421427. [Google Scholar]
  27. Sudarshan M, Sundar S, , 2014. Parasite load estimation by qPCR differentiates between asymptomatic and symptomatic infection in Indian visceral leishmaniasis. Diagn Microbiol Infect Dis 80: 4042. [Google Scholar]
  28. Banu SS, Meyer W, Ahmed B-N, Kim R, Lee R, , 2016. Detection of Leishmania donovani in peripheral blood of asymptomatic individuals in contact with patients with visceral leishmaniasis. Trans R Soc Trop Med Hyg 110: 286293. [Google Scholar]
  29. Sharma MC, Gupta AK, Das VN, Verma N, Kumar N, Saran R, Kar SK, , 2000. Leishmania donovani in blood smears of asymptomatic persons. Acta Trop 76: 195196. [Google Scholar]
  30. Secundino NFC, Eger-Mangrich I, Braga EM, Santoro MM, Pimenta PFP, , 2005. Lutzomyia longipalpis peritrophic matrix: formation, structure, and chemical composition. J Med Entomol 42: 928938. [Google Scholar]
  31. Schlein Y, Jacobson RL, , 1996. Why is man an unsuitable reservoir for the transmission of Leishmania major? Exp Parasitol 82: 298305. [Google Scholar]
  32. Werneck GL, Rodrigues L, Santos MV, Araújo IB, Moura LS, Lima SS, Gomes RBB, Maguire JH, Costa CHN, , 2002. The burden of Leishmania chagasi infection during an urban outbreak of visceral leishmaniasis in Brazil. Acta Trop 83: 1318. [Google Scholar]
  33. Bourgeois N, Lachaud L, Reynes J, Rouanet I, Mahamat A, Bastien P, , 2008. Long-term monitoring of visceral leishmaniasis in patients with AIDS: relapse risk factors, value of polymerase chain reaction, and potential impact on secondary prophylaxis. J Acquir Immune Defic Syndr 48: 1319. [Google Scholar]
  34. Bossolasco S, Gaiera G, Olchini D, Gulletta M, Martello L, Bestetti A, Bossi L, Germagnoli L, Lazzarin A, Uberti-Foppa C, Cinque P, , 2003. Real-time PCR assay for clinical management of human immunodeficiency virus-infected patients with visceral leishmaniasis. J Clin Microbiol 41: 50805084. [Google Scholar]
  35. Mary C, Faraut F, Lascombe L, Dumon H, , 2004. Quantification of Leishmania infantum DNA by a Real-Time PCR Assay with High Sensitivity. J Clin Microbiol 42: 52495255. [Google Scholar]
  36. Sudarshan M, Sundar S, , 2014. Parasite load estimation by qPCR differentiates between asymptomatic and symptomatic infection in Indian visceral leishmaniasis. Diagn Microbiol Infect Dis 80: 4042. [Google Scholar]
  37. Francino O, Altet L, Sánchez-Robert E, Rodriguez A, Solano-Gallego L, Alberola J, Ferrer L, Sánchez A, Roura X, , 2016. Advantages of real-time PCR assay for diagnosis and monitoring of canine leishmaniosis. Vet Parasitol 137: 214221. [Google Scholar]
  38. Seblova V, Volfova V, Dvorak V, Pruzinova K, Votypka J, Kassahun A, Gebre-Michael T, Hailu A, Warburg A, Volf P, , 2013. Phlebotomus orientalis sand flies from two geographically distant Ethiopian localities: biology, genetic analyses and susceptibility to Leishmania donovani. PLoS Negl Trop Dis 7: 18. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.16-0883
Loading
/content/journals/10.4269/ajtmh.16-0883
Loading

Data & Media loading...

  • Received : 08 Nov 2016
  • Accepted : 25 May 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error