Volume 97, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Chagas disease is caused by and transmitted by feces of a triatomine that has the habit of defecating during blood feeding. The salivary glands of triatomines are important to hematophagy because their saliva is rich in anticoagulant and hemolytic proteins. The salivary glands of some species analyzed are reddish due to the presence of nitrophorins (antihemostatic activity). The present study aimed to analyze the color pattern of the salivary glands of 67 triatomine species to evaluate whether the presence of nitrophorins is a synapomorphy of or the tribe Rhodniini, or if it is shared with triatomines of the tribes Triatomini and Cavernicolini. Since only the species of the tribe Rhoniini present red glands, it is admitted that the presence of nitrophorin proteins is a synapomorphy of the tribe Rhodniini and that this tribe has derived more recently when compared with Triatomini and Cavernicolini.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2015. Chagas disease (American trypanosomiasis). Wkly Epidemiol Rec 90: 3344. [Google Scholar]
  2. Galvão C, , 2014. Vetores da Doença de Chagas no Brasil. Curitiba, Brazil: Sociedade Brasileira de Zoologia. [Google Scholar]
  3. Justi S, Galvão C, , 2017. The evolutionary origin of diversity in Chagas disease vectors. Trends Parasitol 33: 4252. [Google Scholar]
  4. Schofield CJ, Service MW, , 1988. The biosystematics of Triatominae. , ed. Biosystematics of Haematophagous Insects, Systematics Association Special. Oxford, United Kingdom: Clarenden Press, 284312. [Google Scholar]
  5. Hellmann K, Hawkins RI, , 1965. Prolixins-S and prolixin-G; two anticoagulants from Rhodnius prolixus Stal. Nature 207: 265267. [Google Scholar]
  6. Ribeiro JM, Hazzard JM, Nussenzveig RH, Champagne DE, Walker FA, , 1993. Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 260: 539541. [Google Scholar]
  7. Lacombe D, , 1999. Anatomia e histologia de glândulas salivares de triatomíneos. Mem Inst Oswaldo Cruz 94: 557564. [Google Scholar]
  8. Montandon CE, Barros E, Vidigal PM, Mendes MT, Anhê ANBM, Ramos HJO, Oliveira CJF, Mafra C, , 2016. Comparative proteomic analysis of the saliva of the Rhodnius prolixus, Triatoma lecticularia and Panstrongylus herreri triatomines reveals a high interspecific functional biodiversity. Insect Biochem Mol Biol 71: 8390. [Google Scholar]
  9. Anhê AC, Azeredo-Oliveira MT, , 2008. Cytochemical characterization of Triatoma infestans and Panstrongylus megistus salivary gland cells (Hemiptera, Reduviidae, Triatominae). Micron 39: 11261133. [Google Scholar]
  10. Champagne DE, Nussenzveig RH, Ribeiro JMC, , 1995. Purification, partial characterization and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood-sucking insect Rhodnius prolixus . J Biol Chem 270: 86918695. [Google Scholar]
  11. Montfort WR, Weichsel A, Andersen JF, , 2000. Nitrophorins and related antihemostatic lipocalins from Rhodnius prolixus and other blood-sucking arthropods. Biochim Biophys Acta 1482: 110118. [Google Scholar]
  12. Soares RPP, Gontijo NF, Romanha AJ, Diotaiuti L, Pereira MH, , 1998. Salivary heme proteins distinguish Rhodnius prolixus from Rhodnius robustus (Hemiptera: Reduviidae: Triatominae). Acta Trop 71: 285291. [Google Scholar]
  13. Pacheco DE, , 2014. Nitroforinas salivares de Rhodnius prolixus (Hemiptera: Reduviidae): Avaliação do RNAi parental e do papel da albumina do hospedeiro na sua atividade biológica. Available at: http://www.bibliotecadigital.ufmg.br/dspace/bitstream/handle/1843/BUOS-9KXJS7/dissertfinal.pdf?sequence=1. Accessed February 22, 2017.
  14. Meirelles RM, Rodrigues IS, Steindel M, Soares MJ, , 2003. Ultrastructure of the salivary glands of Rhodnius domesticus Neiva and Pinto, 1923 (Hemiptera: Reduviidae). J Submicrosc Cytol Pathol 35: 199207. [Google Scholar]
  15. Bargues MD, Marcilla A, Ramsey J, Dujardin JP, Schofield CJ, Mas-Coma S, , 2000. Nuclear rDNA-based molecular clock of the evolution of Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mem Inst Oswaldo Cruz 95: 567573. [Google Scholar]
  16. Justi SA, Galvão C, Schrago CG, , 2016. Geological changes of the Americas and their influence on the diversification of the neotropical kissing bugs (Hemiptera: Reduviidae: Triatominae). PLoS Negl Trop Dis 10: e0004527. [Google Scholar]
  17. Ribeiro JMC, Schneider M, Guimaraes JA, , 1995. Purification and characterization of Prolixin S (Nitrophorin 2), the salivary anticoagulant of the blood sucking bug, Rhodnius prolixus . Biochem J 308: 243249. [Google Scholar]
  18. Noeske-Jungblut C, Kratzschmar J, Haendler B, Alagon A, Possani L, Verhallen P, Donner P, Schleuning WD, , 1994. An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis . J Biol Chem 269: 50505053. [Google Scholar]
  19. Isawa H, Orito Y, Jingushi N, Iwanaga S, Morita A, Chinzei Y, Yuda M, , 2007. Identification and characterization of plasma kallikrein-kinin system inhibitors from salivar glands of the blood-sucking insect Triatoma infestans . FEBS J 274: 42714286. [Google Scholar]
  20. Ribeiro JMC, Assumpcao TC, Francischetti IMB, , 2012. An insight into the sialomes of bloodsucking Heteroptera. Psyche (Stuttg) 2012: 16. [Google Scholar]

Data & Media loading...

  • Received : 17 Oct 2016
  • Accepted : 03 Mar 2017
  • Published online : 10 Jul 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error