1921
Volume 97, Issue 5
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Chagas disease (CD) is caused by the protozoan parasite that infects a broad range of triatomines and mammalian species, including man. It afflicts 8 million people in Latin America, and its incidence is increasing in nonendemic countries owing to rising international immigration and nonvectorial transmission routes such as blood donation. Since the 1960s, the only drugs available for the clinical treatment of this infection have been benznidazole (BZ) and nifurtimox (NFX). Treatment with these trypanocidal drugs is recommended in both the acute and chronic phases of CD. These drugs have low cure rates mainly during the chronic phase, in addition both drugs present side effects that may result in the interruption of the treatment. Thus, more efficient and better-tolerated new drugs or pharmaceutical formulations containing BZ or NFX are urgently needed. Here, we review the drugs currently used for CD chemotherapy, ongoing clinical assays, and most-promising new experimental drugs. In addition, the mechanism of action of the commercially available drugs, NFX and BZ, the biodistribution of the latter, and the potential for novel formulations of BZ based on nanotechnology are discussed. Taken together, the literature emphasizes the urgent need for new therapies for acute and chronic CD.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.16-0761
2017-10-02
2019-09-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/97/5/tpmd160761.html?itemId=/content/journals/10.4269/ajtmh.16-0761&mimeType=html&fmt=ahah

References

  1. Centers for Disease Control and Prevention, 2016. American Trypanosomiasis (also known as CD). Available at: http://www.cdc.gov/parasites/chagas/. Accessed June 27, 2016.
  2. Massad E, , 2008. The elimination of CD from Brazil. Epidemiol Infect 136: 11531164.[Crossref] [Google Scholar]
  3. Schmunis GA, , 2007. Epidemiology of CD in non endemic countries: the role of international migration. Mem Inst Oswaldo Cruz 102 (Suppl 1): 7585.[Crossref] [Google Scholar]
  4. Dias JCP, , 2009. Elimination of CD transmission: perspectives. Mem Inst Oswaldo Cruz 104 (Suppl 1): 4145.[Crossref] [Google Scholar]
  5. Dvorak JA, Hyde TP, , 1973. Trypanosoma cruzi: interaction with vertebrate cells in vitro. 1. Individual interactions at the cellular and subcellular levels. Exp Parasitol 34: 268283.[Crossref] [Google Scholar]
  6. Tarleton RL, , 2007. Immune system recognition of Trypanosoma cruzi . Curr Opin Immunol 19: 430434.[Crossref] [Google Scholar]
  7. Bilate AM, Cunha-Neto E, , 2008. CD cardiomyopathy: current concepts of an old disease. Rev Inst Med Trop Sao Paulo 50: 6774.[Crossref] [Google Scholar]
  8. Rassi A, Jr Rassi A, Marin-Neto JA, , 2010. CD. Lancet 375: 13881402.[Crossref] [Google Scholar]
  9. Kierszenbaum F, , 2005. Where do we stand on the autoimmunity hypothesis of CD? Trends Parasitol 21: 513516.[Crossref] [Google Scholar]
  10. Castro JA, De Mecca MM, Bartel LC, , 2006. Toxic side effects of drugs used to treat CD (American trypanosomiasis). Hum Exp Toxicol 25: 471479.[Crossref] [Google Scholar]
  11. Coura JR, de Castro SL, , 2002. A critical review on CD chemotherapy. Mem Inst Oswaldo Cruz 97: 324.[Crossref] [Google Scholar]
  12. Jannin J, Villa L, , 2007. An overview of CD treatment. Mem Inst Oswaldo Cruz 102 (Suppl I): 9597.[Crossref] [Google Scholar]
  13. Rocha MO, Teixeira MM, Ribeiro AL, , 2007. An update on the management of Chagas cardiomyopathy. Expert Rev Anti Infect Ther 5: 727743.[Crossref] [Google Scholar]
  14. Cançado JR, , 1999. Criteria of CD cure. Mem Inst Oswaldo Cruz 94 (Suppl I): 331335.[Crossref] [Google Scholar]
  15. Cançado JR, , 2002. Long term evaluation of etiological treatment of CD with benznidazole. Rev Inst Med Trop Sao Paulo 44: 2937.[Crossref] [Google Scholar]
  16. Khaw M, Panosian CB, , 1995. Human antiprotozoal therapy: past, present, and future. Clin Microbiol Rev 8: 427439. [Google Scholar]
  17. Murta SMF, Gazzinelli RT, Brener Z, Romanha AJ, , 1998. Molecular characterization of susceptible and naturally resistant strains of Trypanosoma cruzi to benznidazole and nifurtimox. Mol Biol Parasitol 93: 203214.[Crossref] [Google Scholar]
  18. Packchanian A, , 1952. Chemotherapy of experimental CD with nitrofuran compounds. J Parasitol 38: 3040. [Google Scholar]
  19. Brener Z, , 1961. Atividade terapêutica do 5-nitrofuraldeido-semicarbazona (nitrofurazona) em esquema de duração prolongada na infecção experimental pelo Trypanosoma cruzi . Rev Inst Med Trop Sao Paulo 3: 4349. [Google Scholar]
  20. Ferreira HO, , 1961. Forma aguda da doença de Chagas tratada pela nitrofurazona. Rev Inst Med Trop Sao Paulo 3: 287289. [Google Scholar]
  21. Ferreira HO, , 1962. Fase aguda da doença de Chagas. O Hospital 61: 307311. [Google Scholar]
  22. Ferreira HO, Prata A, Rassi A, , 1963. Administração prolongada da nitrofurazona no tratamento da doença de Chagas aguda. O Hospital 63: 13911396. [Google Scholar]
  23. Coura JR, Ferreira LF, Silva JR, , 1962. Experiência com nitrofurazona na fase crônica da doença de Chagas. O Hospital 62: 957964. [Google Scholar]
  24. Streiger ML, Del Barco ML, Fabbro DL, Arias ED, Amicone NA, , 2004. Estudo longitudinal e quimioterapia específica em crianças, com doença de Chagas crônica, residentes em área de baixa endemicidade da República Argentina. Rev Soc Bras Med Trop 37: 365375.[Crossref] [Google Scholar]
  25. Cerisola JA, Neves da Silva N, Prata A, Schenone H, Rohwedder R, , 1977. Evaluation of the efficacy of nifurtimox in chronic human chagasic infection by using xenodiagnosis (author’s transl). Bol Chil Parasitol 32: 5162. [Google Scholar]
  26. Ferreira HO, , 1990. Treatment of the undetermined form of CD with nifortimox and benzonidazole. Rev Soc Bras Med Trop 23: 209211.[Crossref] [Google Scholar]
  27. Gallerano RH, Marr JJ, Sosa RR, , 1990. Therapeutic efficacy of allopurinol in patients with chronic CD. Am J Trop Med Hyg 43: 159166.[Crossref] [Google Scholar]
  28. Coura JR, de Abreu LL, Willcox HP, Petana W, , 1997. Comparative controlled study on the use of benznidazole, nifurtimox and placebo, in the chronic form of CD, in a field area with interrupted transmission: I. preliminary evaluation. Rev Soc Bras Med Trop 30: 139144.[Crossref] [Google Scholar]
  29. Solari A, Contreras MC, Lorca M, García A, Salinas P, Ortíz S, Soto A, Arancibia C, Schenone H, , 1998. Yield of xenodiagnosis and PCR in the evaluation of specific chemotherapy of CD in children. Bol Chil Parasitol 53: 2730. [Google Scholar]
  30. Fabbro-Suasnábar D, Arias E, Streiger M, Placenza M, Ingaramo M, Del Barco M, Amicone N, , 2000. Evolutive behavior towards cardiomyopathy of treated (nifurtimox or benznidazole) and untreated chronic chagasic patients. Rev Inst Med Trop Sao Paulo 42: 99109.[Crossref] [Google Scholar]
  31. Lauria-Pires L, Braga MS, Vexenat AC, Nitz N, Simões-Barbosa A, Tinoco DL, Teixeira AR, , 2000. Progressive chronic Chagas heart disease ten years after treatment with anti-Trypanosoma cruzi nitroderivatives. Am J Trop Med Hyg 63: 111118.[Crossref] [Google Scholar]
  32. Solari A, Ortíz S, Soto A, Arancibia C, Campillay R, Contreras M, Salinas P, Rojas A, Schenone H, , 2001. Treatment of Trypanosoma cruzi-infected children with nifurtimox: a 3 year follow-up by PCR. J Antimicrob Chemother 48: 515519.[Crossref] [Google Scholar]
  33. Rassi A, Amato Neto V, de Siqueira AF, Ferriolli Filho F, Amato VS, Rassi GG, Rassi A, Junior, 2002. Treatment of chronic CD with an association of nifurtimox and corticoid. Rev Soc Bras Med Trop 35: 547550.[Crossref] [Google Scholar]
  34. Schenone H, Contreras M, Solari A, García A, Rojas A, Lorca M, , 2003. Nifurtimox treatment of chronic Chagasic infection in children. Rev Med Chil 131: 10891090. [Google Scholar]
  35. Muñoz C, Zulantay I, Apt W, Ortiz S, Schijman AG, Bisio M, Ferrada V, Herrera C, Martínez G, Solari A, , 2013. Evaluation of nifurtimox treatment of chronic CD by means of several parasitological methods. Antimicrob Agents Chemother 57: 45184523.[Crossref] [Google Scholar]
  36. Jackson Y, Chatelain E, Mauris A, Holst M, Miao Q, Chappuis F, Ndao M, , 2013. Serological and parasitological response in chronic Chagas patients 3 years after nifurtimox treatment. BMC Infect Dis 13: 85.[Crossref] [Google Scholar]
  37. Apt W, Zulantay I, , 2011. Update on the treatment of CD. Rev Med Chil 139: 247257.[Crossref] [Google Scholar]
  38. Grunberg E, Beskid G, Cleeland R, DeLorenzo WF, Titsworth E, Scholer HJ, Richle R, Brener Z, , 1967. Antiprotozoan and antibacterial activity of 2-nitroimidazole derivatives. Antimicrob Agents Chemother 7: 513519. [Google Scholar]
  39. Ferreira HO, , 1974. Tratamento da infecção chagásica com o RO 7-1051. Curitiba, Paraná: X Congresso Soc Bras Med Tropical.
  40. Schenone H, Concha L, Aranda R, Rojas A, Alfaro E, Knierin E, Rojo M, , 1975. Atividade quimioterápica de um derivado nitroimidazolacetamida na infecção chagásica crônica. Bol Chil Parasitol 30: 9193. [Google Scholar]
  41. Ferreira HO, , 1976. Ensaio terapêutico-clínico com benzonidazol na doença de Chagas. Rev Inst Med Trop Sao Paulo 18: 357364. [Google Scholar]
  42. Andrade SG, Figueira RF, , 1977. Estudo experimental sobre a ação terapêutica da droga RO 7 – 1051 na infecção por diferentes cepas do Trypanosoma cruzi . Rev Inst Med Trop Sao Paulo 19: 335341. [Google Scholar]
  43. Barclay CA, Cerisola JA, Lugones H, Ledesma O, Silva JL, Morizo G, , 1978. Aspectos farmacológicos e resultados terapêuticos do benzonidazol novo agente quimioterápico para tratamento da infecção de Chagas. Prensa Med Argent 65: 239244. [Google Scholar]
  44. Andrade S, Magalhaes JB, Pontes AL, , 1985. Evaluation of chemotherapy with benznidazole and nifurtimox in mice infected with Trypanosoma cruzi strains of different types. Bull World Health Organ 63: 721726. [Google Scholar]
  45. Viotti R, Vigliano C, Armenti H, Segura E, , 1994. Treatment of chronic CD with benznidazole: clinical and serologic evolution of patients with long-term follow-up. Am Heart J 127: 151162.[Crossref] [Google Scholar]
  46. de Andrade AL, Zicker F, de Oliveira RM, Almeida Silva S, Luquetti A, Travassos LR, Almeida IC, de Andrade SS, de Andrade JG, Martelli CM, , 1996. Randomized trial of efficacy of benznidazole in treatment of early Trypanosoma cruzi infection. Lancet 348: 14071413.[Crossref] [Google Scholar]
  47. Sosa Estani S, Segura EL, Ruiz AM, Velazquez E, Porcel BM, Yampotis C, , 1998. Efficacy of chemotherapy with benznidazole in children in the indeterminate phase of CD. Am J Trop Med Hyg 59: 526529.[Crossref] [Google Scholar]
  48. Gallerano RR, Sosa RR, , 2000. Interventional study in the natural evolution of CD. Evaluation of specific antiparasitic treatment. Retrospective-prospective study of antiparasitic therapy. Rev Fac Cienc Médicas Córdoba Argent 57: 135162. [Google Scholar]
  49. Viotti R, Vigliano C, Lococo B, Bertocchi G, Petti M, Alvarez MG, Postan M, Armenti A, , 2006. Long-term cardiac outcomes of treating chronic CD with benznidazole versus no treatment: a nonrandomized trial. Ann Intern Med 144: 724734.[Crossref] [Google Scholar]
  50. De Castro AM, Luquetti AO, Rassi A, Chiari E, Galvão LM, , 2006. Detection of parasitemia profiles by blood culture after treatment of human chronic Trypanosoma cruzi infection. Parasitol Res 99: 379383.[Crossref] [Google Scholar]
  51. Fabbro DL, Streiger ML, Arias ED, Bizai ML, del Barco M, Amicone NA, , 2007. Trypanocide treatment among adults with chronic CD living in Santa Fe city (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev Soc Bras Med Trop 40: 110.[Crossref] [Google Scholar]
  52. Yun O, Lima MA, Ellman T, Chambi W, Castillo S, Flevaud L, Roddy P, Parreño F, Albajar Viñas P, Palma PP, , 2009. Feasibility, drug safety, and effectiveness of etiological treatment programs for CD in Honduras, Guatemala, and Bolivia: 10-year experience of Médecins Sans Frontières. PLoS Negl Trop Dis 3: e488.[Crossref] [Google Scholar]
  53. Molina I, 2014. Randomized trial of posaconazole and benznidazole for chronic CD. N Engl J Med 370: 18991908.[Crossref] [Google Scholar]
  54. Morillo CA, 2015. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med 373: 12951306.[Crossref] [Google Scholar]
  55. Haberkorn A, Gonnert R, , 1972. Animal experimental investigation into the activity of nifurtimox against Trypanosoma cruzi . Arzneimittelforschung 22: 15701582. [Google Scholar]
  56. Filardi LS, Brener Z, , 1987. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in CD. Trans R Trop Med Hyg 81: 755759.[Crossref] [Google Scholar]
  57. Andrade JP, 2011. I Latin American guidelines for the diagnosis and treatment of Chagas’ heart disease: executive summary. Arq Bras Cardiol 96: 434442.[Crossref] [Google Scholar]
  58. Fragata-Filho AA, França FF, Fragata CS, Lourenço AM, Faccini CC, de Jesus Costa CA, , 2016. Evaluation of parasiticide treatment with benznidazole in the electrocardiographic, clinical, and serological evolution of CD. PLoS Negl Trop Dis 10: e0004508.[Crossref] [Google Scholar]
  59. Bern C, , 2011. Antitrypanosomal therapy for chronic CD. N Engl J Med 364: 25272534.[Crossref] [Google Scholar]
  60. de Pontes VM, Souza Júnior AS, Cruz FM, Coelho HL, Dias AT, Coêlho IC, Oliveira M de F, , 2010. Adverse reactions in CD patients treated with benznidazole, in the State of Ceará. Rev Soc Bras Med Trop 43: 182187.[Crossref] [Google Scholar]
  61. Levi GC, Lobo IMF, Kallás EG, Amato Neto V, , 1996. Etiological drug treatment of human infection by Trypanosoma cruzi . Rev Inst Med Trop Sao Paulo 38: 3538.[Crossref] [Google Scholar]
  62. Docampo R, , 1990. Sensitivity of parasites to free radical damage by antiparasitic drugs. Chem Biol Interact 73: 127.[Crossref] [Google Scholar]
  63. Maya JD, Repetto Y, Agosín M, Ojeda JM, Tellez R, Gaule C, Morello A, , 1997. Effects of nifurtimox and benznidazole upon glutathione and trypanothione in epimastigote, trypomastigote, and amastigote forms of Trypanosoma cruzi . Mol Biochem Parasitol 86: 101106. [Google Scholar]
  64. Murta SMF, Ropert C, Alves RO, Gazzinelli RT, Romanha AJ, , 1999. In vivo treatment with benznidazole enhances phagocytosis, parasite destruction and cytokine release by macrophages during infection with a drug-susceptible but not with a derived drug-resistant Trypanosoma cruzi population. Parasite Immunol 21: 535544.[Crossref] [Google Scholar]
  65. Turrens JF, Watts BP, Jr Zhong L, Docampo R, , 1996. Inhibition of Trypanosoma cruzi and T. brucei NADH fumarate reductase by benznidazole and anthelmintic imidazole derivatives. Mol Biochem Parasitol 82: 125129.[Crossref] [Google Scholar]
  66. Docampo R, Moreno SN, , 1986. Free radical metabolism of antiparasitic agents. Fed Proc 45: 24712476. [Google Scholar]
  67. Wilkinson SR, Taylor MC, Horn D, Kelly JM, Cheeseman I, , 2008. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci USA 105: 50225027.[Crossref] [Google Scholar]
  68. Murta SM, 2006. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi . Mol Biochem Parasitol 146: 151162.[Crossref] [Google Scholar]
  69. Wilkinson SR, Bot C, Kelly JM, Hall BS, , 2011. Trypanocidal activity of nitroaromatic prodrugs: current treatments and future perspectives. Curr Top Med Chem 11: 20722084.[Crossref] [Google Scholar]
  70. Trochine A, Creek DJ, Faral-Tello P, Barrett MP, Robello C, , 2014. Benznidazole biotransformation and multiple targets in Trypanosoma cruzi revealed by metabolomics. PLoS Negl Trop Dis 8: e2844.[Crossref] [Google Scholar]
  71. Toledo MJ, Bahia MT, Veloso VM, Carneiro CM, Machado-Coelho GL, Alves CF, Martins HR, Cruz RE, Tafuri WL, Lana M, , 2004. Effects of specific treatment on parasitological and histopathological parameters in mice infected with different Trypanosoma cruzi clonal genotypes. J Antimicrob Chemother 53: 10451053.[Crossref] [Google Scholar]
  72. Brener Z, Cançado JR, Galvão LM, Da Luz ZM, Filardi LS, Pereira ME, Santos LM, Cançado CB, , 1993. An experimental and clinical assay with ketoconazole in the treatment of CD. Mem Inst Oswaldo Cruz 88: 149153.[Crossref] [Google Scholar]
  73. Solari A, 1993. Successful treatment of Trypanosoma cruzi encephalitis in a patient with hemophilia and AIDS. Clin Infect Dis 16: 255259.[Crossref] [Google Scholar]
  74. Apt W, Arribada A, Zulantay I, Solari A, Sánchez G, Mundaca K, Coronado X, Rodríguez J, Gil LC, Osuna A, , 2005. Itraconazole or allopurinol in the treatment of chronic American trypanosomiasis: the results of clinical and parasitological examinations 11 years post-treatment. Ann Trop Med Parasitol 99: 733741.[Crossref] [Google Scholar]
  75. Rassi A, Luquetti AO, Rassi A, Jr Rassi GG, Rassi SG, da Silva IG, Rassi AG, , 2007. Specific treatment for Trypanosoma cruzi: lack of efficacy of allopurinol in the human chronic phase of CD. Am J Trop Med Hyg 76: 5861. [Google Scholar]
  76. Drugs for Neglected Diseases, Initiative, 2013. Drug Trial for Leading Parasitic Killer of the Americas Shows Mixed Results but Provides New Evidence for Improved Therapy. Available at: http://www.dndi.org/media-centre/press-releases/1700-e1224.html?highlight=WyJlMTIyNCJd. Accessed June 23, 2017.
  77. Soeiro MNC, de Castro SL, , 2009. Trypanosoma cruzi targets for new chemotherapeutic approaches. Exp Opin Therap Targ 13: 105121.[Crossref] [Google Scholar]
  78. Urbina JA, , 2010. Specific chemotherapy of CD: relevance, current limitations and new approaches. Acta Trop 115: 5568.[Crossref] [Google Scholar]
  79. Apt W, , 2010. Current and developing therapeutic agents in the treatment of CD. Drug Des Devel Ther 4: 243253.[Crossref] [Google Scholar]
  80. Urbina J, , 2009. Ergosterol biosynthesis and drug development for CD. Mem Inst Oswaldo Cruz 104 (Suppl I): 311318.[Crossref] [Google Scholar]
  81. Liendo A, Visbal G, Piras MM, Piras R, Urbina JA, , 1999. Sterol composition and biosynthesis in Trypanosoma cruzi amastigotes. Mol Biochem Parasitol 104: 8191.[Crossref] [Google Scholar]
  82. Urbina JA, 1998. Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother 42: 17711777. [Google Scholar]
  83. Molina J, Martins-Filho O, Brener Z, Romanha AJ, Loebenberg D, Urbina JA, , 2000. Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob Agents Chemother 44: 150155.[Crossref] [Google Scholar]
  84. Moraes CB, Giardini MA, Kim H, Franco CH, Araujo-Junior AM, Schenkman S, Chatelain E, Freitas-Junior LH, , 2014. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: implications for CD drug discovery and development. Sci Rep 4: 4703.[Crossref] [Google Scholar]
  85. Bustamante JM, Craft JM, Crowe BD, Ketchie SA, Tarleton RL, , 2014. New, combined, and reduced dosing treatment protocols cure Trypanosoma cruzi infection in mice. J Infect Dis 209: 150162.[Crossref] [Google Scholar]
  86. Pinazo M, Espinosa G, Gállego M, , 2010. Successful treatment with posaconazole of a patient with chronic CD and systemic lupus erythematosus. Am J Trop Med Hyg 82: 583587.[Crossref] [Google Scholar]
  87. Morillo CA, STOP-CHAGAS Investigators.; , 2017. Benznidazole and posaconazole in eliminating parasites in asymptomatic Trypanosoma cruzi carriers: the STOP-CHAGAS Trial. J Am Coll Cardiol 69: 939947.[Crossref] [Google Scholar]
  88. Urbina J, , 2011. New insights in CD treatment. Drugs Future 35: 409419.[Crossref] [Google Scholar]
  89. Urbina JA, Payares G, Sanoja C, Lira R, Romanha AJ, , 2003. In vitro and in vivo activities of ravuconazole on Trypanosoma cruzi, the causative agent of CD. Int J Antimicrob Agents 21: 2738.[Crossref] [Google Scholar]
  90. Diniz L de F, Caldas IS, Guedes PM, Crepalde G, de Lana M, Carneiro CM, Talvani A, Urbina JA, Bahia MT, , 2010. Effects of ravuconazole treatment on parasite load and immune response in dogs experimentally infected with Trypanosoma cruzi . Antimicrob Agents Chemother 54: 29792986.[Crossref] [Google Scholar]
  91. Buckner FS, Urbina JA, , 2012. Recent developments in sterol 14-demethylase inhibitors for CD. J Parasitol Drugs Drug Resist 2: 236242.[Crossref] [Google Scholar]
  92. McCabe E, Remington J, Araujo F, , 1986. In vitro and in vivo effect of itraconazole against Trypanosoma cruzi . Am J Trop Med Hyg 35: 280284.[Crossref] [Google Scholar]
  93. Apt W, Arribada A, Zulantay I, Rodríguez J, Saavedra M, Muñoz A, , 2013. Treatment of CD with itraconazole: electrocardiographic and parasitological conditions after 20 years of follow-up. J Antimicrob Chemother 68: 21642169.[Crossref] [Google Scholar]
  94. Benaim G, 2006. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J Med Chem 49: 892899.[Crossref] [Google Scholar]
  95. Paniz-Mondolfi AE, Pérez-Álvarez AM, Lanza G, Márquez E, Concepción JL, , 2009. Amiodarone and itraconazole: a rational therapeutic approach for the treatment of chronic CD. Chemotherapy 55: 228233.[Crossref] [Google Scholar]
  96. Gali WL, Sarabanda AV, Baggio JM, Ferreira LG, Gomes GG, Marin-Neto JA, Junqueira LF, , 2014. Implantable cardioverter-defibrillators for treatment of sustained ventricular arrhythmias in patients with Chagas’ heart disease: comparison with a control group treated with amiodarone alone. Europace 16: 674680.[Crossref] [Google Scholar]
  97. Benaim G, Paniz Mondolfi AE, , 2012. The emerging role of amiodarone and dronedarone in CD. Nat Rev Cardiol 10: 605609.[Crossref] [Google Scholar]
  98. Benaim G, Hernandez-Rodriguez V, Mujica-Gonzalez S, Plaza-Rojas L, Silva ML, Parra-Gimenez N, Garcia-Marchan Y, Paniz-Mondolfi A, Uzcanga G, , 2012. In vitro anti-Trypanosoma cruzi activity of dronedarone, a novel amiodarone derivative with an improved safety profile. Antimicrob Agents Chemother 56: 37203725.[Crossref] [Google Scholar]
  99. Marin-Neto J, Rassi AJ, Morillo C, Avezum A, Connolly SJ, Sosa-Estani S, Rosas F, Yusuf S, , 2008. Rationale and design of a randomized placebo-controlled trial assessing the effects of etiologic treatment in Chagas cardiomyopathy: the Benznidazole evaluation for interrupting trypanosomiasis (BENEFIT). Am Heart J 156: 3743.[Crossref] [Google Scholar]
  100. Marin-Neto J, Rassi AJ, Avezum AJ, Mattos AC, Rassi A, Morillo CA, Sosa-Estani S, Yusuf S, , 2009. Benefit trial: testing the hypothesis that trypanocidal therapy is beneficial for patients with chronic Chagas heart disease. Mem Inst Oswaldo Cruz 1: 319324.[Crossref] [Google Scholar]
  101. Drugs for Neglected Diseases Initiative, 2012 . CD Clinical Research Platform. Newsletter n.2. Rio de Janeiro, Brazil: Drugs for Neglected Diseases Initiative.
  102. Drugs for Neglected Diseases, Initiative, 2016. Paediatric Dosage Form of Benznidazole (Chagas). Available at: http://www.dndi.org/diseases-projects/portfolio/benznidazole-paedriatric-dosage-form.html. Accessed May 23, 2017.
  103. Altcheh J, Moscatelli G, Mastrantonio G, Moroni S, Giglio N, Marson ME, Ballering G, Bisio M, Koren G, García-Bournissen F, , 2014. Population pharmacokinetic study of benznidazole in pediatric CD suggests efficacy despite lower plasma concentrations than in adults. PLoS Negl Trop Dis 8: e2907.[Crossref] [Google Scholar]
  104. Drugs for Neglected Diseases, Initiative, 2017. New Benznidazole Regimens/Combos. Available at: http://www.dndi.org/diseases-projects/portfolio/new-benz-regimens/. Accessed May 23, 2017.
  105. Souza AP, Oliveira GM, Vanderpas J, de Castro SL, Rivera MT, Araújo-Jorge TC, , 2003. Selenium supplementation at low doses contributes to the decrease in heart damage in experimental Trypanosoma cruzi infection. Parasitol Res 91: 5154.[Crossref] [Google Scholar]
  106. Souza AP, Jelicks LA, Tanowitz HB, Olivieri BP, Medeiros MM, Oliveira GM, Pires AR, Santos AM, Araújo-Jorge TC, , 2010. The benefits of using selenium in the treatment of CD: prevention of right ventricle chamber dilatation and reversion of Trypanosoma cruzi-induced acute and chronic cardiomyopathy in mice. Mem Inst Oswaldo Cruz 105: 746751.[Crossref] [Google Scholar]
  107. Rivera MT, de Souza AP, Moreno AH, Xavier SS, Gomes JA, Rocha MO, Correa-Oliveira R, Nève J, Vanderpas J, Araújo-Jorge TC, , 2002. Progressive Chagas’ cardiomyopathy is associated with low selenium levels. Am J Trop Med Hyg 66: 706712.[Crossref] [Google Scholar]
  108. Bahia MT, de Andrade IM, Martins TA, do Nascimento ÁF, Diniz L de F, Caldas IS, Talvani A, Trunz BB, Torreele E, Ribeiro I, , 2012. Fexinidazole: a potential new drug candidate for CD. PLoS Negl Trop Dis 6: e1870.[Crossref] [Google Scholar]
  109. Bahia MT, 2014. Antitrypanosomal activity of fexinidazole metabolites, potential new drug candidates for CD. Antimicrob Agents Chemother 58: 43624370.[Crossref] [Google Scholar]
  110. Drugs for Neglected Diseases, Initiative, 2017. Fexinidazole (Chagas). Available at: https://www.dndi.org/diseases-projects/portfolio/fexinidazole-chagas/. Accessed May 23, 2017.
  111. Nwaka S, Hudson A, , 2006. Innovative lead discovery strategies for tropical diseases. Nat Rev Drug Discov 5: 941955.[Crossref] [Google Scholar]
  112. Stoppani AO, , 1999. The chemotherapy of CD. Medicina (B Aires) 59: 147165. [Google Scholar]
  113. Urbina JA, , 2001. Specific treatment of CD: current status and new developments. Curr Opin Infect Dis 14: 733741.[Crossref] [Google Scholar]
  114. Maya J, Cassels B, Iturriaga-Vásquez P, Ferreira J, Faúndez M, Galanti N, Ferreira A, Morello A, , 2010. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp Biochem Physiol 146: 601620.[Crossref] [Google Scholar]
  115. Chen YT, Brinen LS, Kerr LD, Hansell E, Doyle PS, Mckerrow JH, Roush WR, , 2010. In vitro and in vivo studies of the trypanocidal properties of WRR-483 against Trypanosoma cruzi . PLoS Negl Trop Dis 4: e825.[Crossref] [Google Scholar]
  116. Jelicks AL, 2002. Phosphoramidon treatment improves the consequences of chagasic heart disease in mice. Clin Sci 103: 26752715.[Crossref] [Google Scholar]
  117. Barr SC, Warner KL, Kornreic BG, Piscitelli J, Wolfe A, Benet L, McKerrow JH, , 2005. A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi . Antimicrob Agents Chemother 49: 51605161.[Crossref] [Google Scholar]
  118. Fairlamb AH, Cerami A, , 1992. Metabolism and functions of trypanothione in Kinetoplastida. Annu Rev Microbiol 46: 695729.[Crossref] [Google Scholar]
  119. Schmidt A, Krauth-Siegel RL, , 2002. Enzymes of the trypanothione metabolism as targets for antitrypanosomal drug development. Curr Top Med Chem 2: 12391259.[Crossref] [Google Scholar]
  120. Bond CS, Zhang Y, Berriman M, Cunningham ML, Fairlamb AH, Hunter WN, , 1999. Crystal structure of Trypanosoma cruzi trypanothione reductase in complex with trypanothione and the structure-based discovery of new natural product inhibitors. Structure 7: 8189.[Crossref] [Google Scholar]
  121. Gutierrez-Correa J, Fairlamb AH, Stoppani AO, , 2001. Trypanosoma cruzi trypanothione reductase is inactivated by peroxidase-generated phenothiazine cationic radicals. Free Radic Res 34: 363378.[Crossref] [Google Scholar]
  122. Li Z, Fennie MW, Ganem B, Hancock MT, Kobaslija M, Rattendi D, Bacchi CJ, O’Sullivan MC, , 2001. Polyamines with N-(3-phenylpropyl) substituents are effective competitive inhibitors of trypanothione reductase and trypanocidal agents. Bioorg Med Chem Lett 11: 251254.[Crossref] [Google Scholar]
  123. Salmon-Chemin L, Buisine E, , 2001. 2- and 3-substituted 1,4-naphtoquinone derivatives as subversive substrates of trypanothione reductase and lipoamide dehydrogenase from Trypanosoma cruzi: synthesis and correlation between redox cycling activities and in vitro cytotoxicity. J Med Chem 44: 548565.[Crossref] [Google Scholar]
  124. Rivarola HW, Paglini-Oliva PA, , 2001. Trypanosoma cruzi trypanothione reductase inhibitors: phenothiazines and related compounds modify experimental CD evolution. Curr Drug Targets Cardiovasc Haematol Disord 2: 4352.[Crossref] [Google Scholar]
  125. Rivarola HW, Fernandez AR, Enders JE, Fretes R, Gea S, Suligoy M, Palma JA, Paglini-Oliva P, , 1999. Thioridazine treatment modifies the evolution of Trypanosoma cruzi infection in mice. Ann Trop Med Parasitol 93: 695702.[Crossref] [Google Scholar]
  126. Lo Presti MS, Rivarola HW, Bustamante JM, Fernández AR, Enders JE, Fretes R, Gea S, Paglini-Oliva PA, , 2004. Thioridazine treatment prevents cardiopathy in Trypanosoma cruzi infected mice. Int J Antimicrob Agents 23: 634636.[Crossref] [Google Scholar]
  127. Cazzulo JJ, , 2002. Proteinases of Trypanosoma cruzi: potential targets for the chemotherapy of CD. Curr Top Med Chem 2: 12611267.[Crossref] [Google Scholar]
  128. Urbina JA, Docampo R, , 2003. Specific chemotherapy of CD: controversies and advances. Trends Parasitol 19: 495501.[Crossref] [Google Scholar]
  129. Engel JC, Doyle PS, Hsieh I, McKerrow JH, , 1998. Cysteine protease inhibitors cure experimental Trypanosoma cruzi infection. J Exp Med 188: 725734.[Crossref] [Google Scholar]
  130. Drugs for Neglected Diseases, Initiative, 2014. K777 (Chagas). Available at: http://www.dndi.org/diseases-projects/portfolio/k777.html. Accessed May 23, 2017.
  131. Brachwitz H, Vollgraf C, , 1995. Analogs of alkyllysophospholipids: chemistry, effects on the molecular level and their consequences for normal and malignant cells. Pharmacol Ther 66: 3982.[Crossref] [Google Scholar]
  132. Croft SL, Snowdon D, Yardley V, , 1996. The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi, and Trypanosoma brucei . J Antimicrob Chemother 38: 10411047.[Crossref] [Google Scholar]
  133. Saraiva VB, Gibaldi D, Previato JO, Mendonça-Previato L, Bozza MT, Freire-De-Lima CG, Heise N, , 2002. Proinflammatory and cytotoxic effects of hexadecylphosphocholine (miltefosine) against drug-resistant strains of Trypanosoma cruzi . Antimicrob Agents Chemother 46: 34723477.[Crossref] [Google Scholar]
  134. Luna KP, Hernández IP, Rueda CM, Zorro MM, Croft SL, Escobar P, , 2009. In vitro susceptibility of Trypanosoma cruzi strains from Santander, Colombia, to hexadecylphosphocholine (miltefosine), nifurtimox and benznidazole. Biomedica 29: 448455.[Crossref] [Google Scholar]
  135. Santa-Rita RM, Lira R, Barbosa HS, Urbina JA, de Castro SL, , 2005. Anti-proliferative synergy of lysophospholipid analogues and ketoconazole against Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae): cellular and ultrastructural analysis. J Antimicrob Chemother 55: 780784.[Crossref] [Google Scholar]
  136. Lira R, Contreras LM, Rita RM, Urbina JA, , 2001. Mechanism of action of anti-proliferative lysophospholipid analogues against the protozoan parasite Trypanosoma cruzi: potentiation of in vitro activity by the sterol biosynthesis inhibitor ketoconazole. J Antimicrob Chemother 47: 537546.[Crossref] [Google Scholar]
  137. Urbina JA, Payares G, Sanoja C, Molina J, Lira R, Brener Z, Romanha AJ, , 2003. Parasitological cure of acute and chronic experimental CD using the long-acting experimental triazole TAK-187. Activity against drug-resistant Trypanosoma cruzi strains. Int J Antimicrob Agents 21: 3948.[Crossref] [Google Scholar]
  138. Corrales M, Cardozo R, Segura MA, Urbina JA, Basombrío MA, , 2005. Comparative efficacies of TAK-187, a long-lasting ergosterol biosynthesis inhibitor, and benznidazole in preventing cardiac damage in a murine model of CD. Antimicrob Agents Chemother 49: 15561560.[Crossref] [Google Scholar]
  139. Molina J, Brener Z, Romanha AJ, Urbina JA, , 2000. In vivo activity of the bis-triazole D0870 against drug-susceptible and drug-resistant strains of the protozoan parasite Trypanosoma cruzi . J Antimicrob Chemother 46: 137140.[Crossref] [Google Scholar]
  140. Williams KJ, Denning DW, , 2001. Termination of development of D0870. J Antimicrob Chemother 47: 720721.[Crossref] [Google Scholar]
  141. Urbina JA, Lira R, Visbal G, Bartrolí J, , 2000. In vitro antiproliferative effects and mechanism of action of the new triazole derivative UR-9825 against the protozoan parasite Trypanosoma (Schizotrypanum) cruzi . Antimicrob Agents Chemother 44: 24982502.[Crossref] [Google Scholar]
  142. Barros MB, , 2007. Desenvolvimento e avaliação biológica de formulações de nanocápsulas para tratamento da doença de Chagas em modelo murino. Master’s thesis. Ouro Preto, Brazil: Federal University of Ouro Preto.
  143. Guedes PM, Urbina JA, de Lana M, Afonso LC, Veloso VM, Tafuri WL, Machado-Coelho GL, Chiari E, Bahia MT, , 2004. Activity of the new triazole derivative albaconazole against Trypanosoma (Schizotrypanum) cruzi in dog hosts. Antimicrob Agents Chemother 48: 42864292.[Crossref] [Google Scholar]
  144. Gulin JEN, Eagleson MA, Postan M, Cutrullis RA, Freilij H, Bournissen FG, Petray PB, Altcheh J, , 2013. Efficacy of voriconazole in a murine model of acute Trypanosoma cruzi infection. J Antimicrob Chemother 68: 888894.[Crossref] [Google Scholar]
  145. Keenan M, 2012. Analogues of fenarimol are potent inhibitors of Trypanosoma cruzi and are efficacious in a murine model of CD. J Med Chem 55: 41894204.[Crossref] [Google Scholar]
  146. Keenan M, 2013. Two analogues of fenarimol show curative activity in an experimental model of CD. J Med Chem 56: 1015810170.[Crossref] [Google Scholar]
  147. Drugs for Neglected Diseases, Initiative, 2014. Fenarimol. Available at: http://www.dndi.org/diseases-projects/portfolio/fenarimol-series.html. Accessed May 23, 2017.
  148. Akama T, 2010. Novel boron-containing small molecules demonstrate potent activity against Trypanosoma cruzi. Melbourne, Victoria. ICOPA XII: 728. [Google Scholar]
  149. Drugs for Neglected Diseases, Initiative, 2016. Oxaborole SCYX-7158 (HAT). Available at: http://www.dndi.org/diseases-projects/portfolio/oxaborole-scyx-7158.html. Accessed May 23, 2017.
  150. Garzoni LR, Caldera A, Meirelles M de NL, de Castro SL, Docampo R, Meints GA, Oldfield E, Urbina JA, , 2004. Selective in vitro effects of the farnesyl pyrophosphate synthase inhibitor risedronate on Trypanosoma cruzi . Int J Antimicrob Agents 23: 273285.[Crossref] [Google Scholar]
  151. Garzoni LR, Waghabi MC, Baptista MM, de Castro SL, Meirelles MN, Britto CC, Docampo R, Oldfield E, Urbina JA, , 2004. Antiparasitic activity of risedronate in a murine model of acute CD. Int J Antimicrob Agents 23: 286290.[Crossref] [Google Scholar]
  152. Bouzahzah B, Jelicks LA, Morris SA, Weiss LM, Tanowitz HB, , 2005. Risedronate in the treatment of murine CD. Parasitol Res 96: 184187.[Crossref] [Google Scholar]
  153. Marr JJ, Berens RL, Nelson DJ, , 1978. Antitrypanosomal effect of allopurinol: conversion in vivo to aminopyrazolopyrimidine nucleotides by Trypanosoma cruzi . Science 201: 10181020.[Crossref] [Google Scholar]
  154. Avila JL, Avila A, , 1981. Trypanosoma cruzi: allopurinol in the treatment of mice with experimental acute CD. Exp Parasitol 51: 204208.[Crossref] [Google Scholar]
  155. Lauria-Pires L, de Castro CN, Emanuel A, Prata A, , 1988. Ineffectiveness of allopurinol in patients in the acute phase of CD. Rev Soc Bras Med Trop 21: 79.[Crossref] [Google Scholar]
  156. Silva CF, Meuser MB, De Souza EM, Meirelles MN, Stephens CE, Som P, Boykin DW, Soeiro MN, , 2007. Cellular effects of reversed amidines on Trypanosoma cruzi . Antimicrob Agents Chemother 51: 38033809.[Crossref] [Google Scholar]
  157. Silva CF, Batista MM, Mota RA, De Souza EM, Stephens CE, Som P, Boykin DW, Soeiro Mde N, , 2007. Activity of “reversed” diamidines against Trypanosoma cruzi in vitro. Biochem Pharmacol 73: 19391946.[Crossref] [Google Scholar]
  158. Pacheco MG, Silva CF, Souza EM, Batista MM, Silva PB, Kumar A, Stephens CE, Boykin DW, Soeiro M de N, , 2009. Trypanosoma cruzi: activity of heterocyclic cationic molecules in vitro. Exp Parasitol 123: 7380.[Crossref] [Google Scholar]
  159. Batista DG, 2010. Arylimidamide DB766, a potential chemotherapeutic candidate for CD treatment. Antimicrob Agents Chemother 54: 29402952.[Crossref] [Google Scholar]
  160. Soeiro MN, Werbovetz K, Boykin DW, Wilson WD, Wang MZ, Hemphill A, , 2013. Novel amidines and analogues as promising agents against intracellular parasites: a systematic review. Parasitology 140: 929951.[Crossref] [Google Scholar]
  161. De Souza EM, Oliveira GM, Soeiro MNC, , 2007. Electrocardiographic finding in acutely and chronically Trypanosoma cruzi-infected mice treated by a phenyl-substituted analogue of Furamidine DB569. Drug Target Insights 2: 6169.[Crossref] [Google Scholar]
  162. Silva CF, Batista MM, Batista DGJ, De Souza EM, da Silva PB, de Oliveira GM, Meuser AS, Shareef AR, Boykin DW, Soeiro M de N, , 2008. In vitro and in vivo studies of the trypanocidal activity of a diarylthiophene diamidine against Trypanosoma cruzi . Antimicrob Agents Chemother 52: 33073314.[Crossref] [Google Scholar]
  163. Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, , 2016. Proteasome inhibition for treatment of leishmaniasis, CD and sleeping sickness. Nature 537: 229233.[Crossref] [Google Scholar]
  164. Romanha AJ, 2010. In vitro and in vivo experimental models for drug screening and development for CD. Mem Inst Oswaldo Cruz 105: 233238.[Crossref] [Google Scholar]
  165. Morilla MJ, Benavidez P, Lopez MO, Bakas L, Romero EL, , 2002. Development and in vitro characterisation of a benznidazole liposomal formulation. Int J Pharm 249: 8999.[Crossref] [Google Scholar]
  166. Morilla MJ, Benavidez PE, Lopez MO, Romero EL, , 2003. Liposomal benznidazole: a high-performance liquid chromatographic determination for biodistribution studies. J Chromatogr Sci 41: 405409.[Crossref] [Google Scholar]
  167. Morilla MJ, Montanari JA, Prieto MJ, Lopez MO, Petray PB, Romero EL, , 2004. Intravenous liposomal benznidazole as trypanocidal agent: increasing drug delivery to liver is not enough. Int J Pharm 278: 311318.[Crossref] [Google Scholar]
  168. Morilla MJ, Prieto MJ, Romero EL, , 2005. Benznidazole vs benznidazole in multilamellar liposomes: how different they interact with blood components? Mem Inst Oswaldo Cruz 100: 213219.[Crossref] [Google Scholar]
  169. Leonardi D, Salomóna CJ, Lamasa MC, Olivieri AC, , 2009. Development of novel formulations for CD: optimization of benznidazole chitosan microparticles based on artificial neural networks. Int J Pharm 367: 140147.[Crossref] [Google Scholar]
  170. Melo RC, Brener Z, , 1978. Tissue tropism of different Trypanosoma cruzi strains. J Parasitol 64: 475482.[Crossref] [Google Scholar]
  171. Lamas MC, Villaggi L, Nocito I, Bassani G, Leonardi D, Pascutti F, Serra E, Salomón CJ, , 2006. Development of parenteral formulations and evaluation of the biological activity of the trypanocide drug benznidazole. Int J Pharm 13: 239243.[Crossref] [Google Scholar]
  172. Nogueira Silva JJ, Pavanelli WR, Gutierrez FR, Alves Lima FC, Ferreira da Silva AB, Santana Silva J, Wagner Franco D, , 2008. Complexation of the anti-Trypanosoma cruzi drug benznidazole improves solubility and efficacy. J Med Chem 51: 41044114.[Crossref] [Google Scholar]
  173. Raaflaub J, Ziegler WH, , 1979. Single-dose pharmacokinetics of the trypanosomicide benznidazole in man. Arzneimittelforschung 29: 16111614. [Google Scholar]
  174. Raaflaub J, , 1980. Multiple-dose kinetics of the trypanosomicide benznidazole in man. Arzneimittelforschung 30: 21922194. [Google Scholar]
  175. Raether W, Hanel H, , 2003. Nitroheterocyclic drugs with broad spectrum activity. Parasitol Res 90: S19S39. [Google Scholar]
  176. Wilkinson SR, Kelly JM, , 2009. Trypanocidal drugs: mechanisms, resistance and new targets. Expert Rev Mol Med 11: e31.[Crossref] [Google Scholar]
  177. Workman P, White RAS, Walton MI, Owen LN, Twentyman PR, , 1984. Preclinical pharmacokinetics of benznidazole. Br J Cancer 50: 291303.[Crossref] [Google Scholar]
  178. Medenwald H, Brandau K, Schlossmann K, , 1972. Quantitative determination of nifurtimox in body fluids of rat, dog and man. Arzneimittelforschung 22: 16131617. [Google Scholar]
  179. Workman P, Brown JM, , 1981. Structure-pharmacokinetic relationships for misonidazole analogues in mice. Cancer Chemother Pharmacol 6: 3949.[Crossref] [Google Scholar]
  180. Perin L, Moreira da Silva R, Fonseca KD, Cardoso JM, Mathias FA, Reis LE, Molina I, Correa-Oliveira R, Vieira PM, Carneiro CM, , 2017. Pharmacokinetics and tissue distribution of benznidazole after oral administration in mice. Antimicrob Agents Chemother 61: e02410e02416.[Crossref] [Google Scholar]
  181. Duhm B, Maul W, Medenwald H, Patzschke K, Wegner A, , 1972. Investigations on the Pharmacokinetics of nifurtimox-35S in the rat and dog. Arzneimittelforschung 22: 16171624. [Google Scholar]
  182. Soy D, Aldasoro E, Guerrero L, Posada E, Serret N, Mejía T, Urbina JA, Gascón J, , 2015. Population pharmacokinetics of benznidazole in adult patients with CD. Antimicrob Agents Chemother 59: 33423349.[Crossref] [Google Scholar]
  183. Molina I, Salvador F, Sánchez-Montalvá A, Artaza MA, Moreno R, Perin L, Esquisabel A, Pinto L, Pedraz JL, , 2017. Pharmacokinetics of benznidazole in healthy volunteers and implications in future clinical trials. Antimicrob Agents Chemother 61: e01912e01916.[Crossref] [Google Scholar]
  184. Urbina JA, , 2015. Recent clinical trials for the etiological treatment of chronic CD: advances, challenges and perspectives. J Eukaryot Microbiol 62: 149156.[Crossref] [Google Scholar]
  185. Novartis, 2017. Novartis Institute for Tropical Diseases. Available at: https://www.nibr.com/our-research/institutes/novartis-institute-tropical-diseases. Accessed May 23, 2017.
  186. GSK, 2017. Neglected Tropical Diseases. Available at: http://www.gsk.com/en-gb/partnerships/neglected-tropical-diseases/. Accessed May 23, 2017.
  187. Pfizer (Anacor), 2017. Neglected Diseases. Available at: https://www.anacor.com/R-and-D/neglected-diseases/. Accessed May 23, 2017.
  188. Jhonson & Jhonson (Janssen), 2017. Available at: http://www.janssen.com/pt/partnerships/janssen-ucsd-join-forces-fight-chagas-disease. Accessed May 23, 2017.
  189. Sanofi, 2017. Fighting Neglected Tropical Diseases. Available at: http://en.sanofi.com/csr/patient/priorities/access_to_care/access_to_medicines/neglected_tropical_diseases/neglected_tropical_diseases.aspx. Accessed May 23, 2017.
  190. Merck & Co, Inc., 2017. Outlook: Chagas Disease Sponsors, 2017. Available at: http://www.nature.com/nature/outlook/chagas/sponsor.html. Accessed May 23, 2017.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.16-0761
Loading
/content/journals/10.4269/ajtmh.16-0761
Loading

Data & Media loading...

  • Received : 20 Sep 2016
  • Accepted : 24 Jun 2017
  • Published online : 02 Oct 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error