Volume 97, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Histopathological data collected from patients with severe malaria have been instrumental for studying malaria pathogenesis. Animal models of malaria are critical to complement such studies. Here, the histopathological changes observed in a rhesus macaque with severe and complicated malaria are reported. The animal presented with thrombocytopenia, severe anemia, and hyperparasitemia during the acute infection. The macaque was given subcurative antimalarial treatment, fluid support, and a blood transfusion to treat the clinical complications, but at the time of transfusion, kidney function was compromised. These interventions did not restore kidney function, and the animal was euthanized due to irreversible renal failure. Gross pathological and histological examinations revealed that the lungs, kidneys, liver, spleen, and bone marrow exhibited abnormalities similar to those described in patients with malaria. Overall, this case report illustrates the similarities in the pathophysiological complications that can occur in human malaria and cynomolgi malaria in rhesus macaques.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Laishram DD, Sutton PL, Nanda N, Sharma VL, Sobti RC, Carlton JM, Joshi H, , 2012. The complexities of malaria disease manifestations with a focus on asymptomatic malaria. Malar J 11: 115.[Crossref] [Google Scholar]
  2. Anstey NM, Russell B, Yeo TW, Price RN, , 2009. The pathophysiology of vivax malaria. Trends Parasitol 25: 220227.[Crossref] [Google Scholar]
  3. Anstey NM, Douglas NM, Poespoprodjo JR, Price RN, , 2012. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. Adv Parasitol 80: 151201.[Crossref] [Google Scholar]
  4. Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, Duraisingh MT, Smith JD, , 2015. Investigating the pathogenesis of severe malaria: a multidisciplinary and cross-geographical approach. Am J Trop Med Hyg 93: 4256.[Crossref] [Google Scholar]
  5. Joice R, , 2014. Plasmodium falciparum transmission stages accumulate in the human bone marrow. Sci Transl Med 6: 244re5.[Crossref] [Google Scholar]
  6. Hochman SE, , 2015. Fatal pediatric cerebral malaria is associated with intravascular monocytes and platelets that are increased with HIV coinfection. MBio 6: e01390e01415.[Crossref] [Google Scholar]
  7. Casals-Pascual C, , 2006. Suppression of erythropoiesis in malarial anemia is associated with hemozoin in vitro and in vivo. Blood 108: 25692577.[Crossref] [Google Scholar]
  8. Lombardini ED, Gettayacamin M, Turner GD, Brown AE, , 2015. A review of Plasmodium coatneyi-macaque models of severe malaria. Vet Pathol 52: 9981011.[Crossref] [Google Scholar]
  9. Lamikanra AA, Brown D, Potocnik A, Casals-Pascual C, Langhorne J, Roberts DJ, , 2007. Malarial anemia: of mice and men. Blood 110: 1828.[Crossref] [Google Scholar]
  10. Langhorne J, , 2011. The relevance of non-human primate and rodent malaria models for humans. Malar J 10: 23.[Crossref] [Google Scholar]
  11. Lacerda MV, , 2012. Postmortem characterization of patients with clinical diagnosis of Plasmodium vivax malaria: to what extent does this parasite kill? Clin Infect Dis 55: e67e74.[Crossref] [Google Scholar]
  12. Valecha N, , 2009. Histopathology of fatal respiratory distress caused by Plasmodium vivax malaria. Am J Trop Med Hyg 81: 758762.[Crossref] [Google Scholar]
  13. Joyner CJ, Barnwell JW, Galinski MR, , 2015. No more monkeying around: primate malaria model systems are key to understanding Plasmodium vivax liver-stage biology, hypnozoites, and relapses. Front Microbiol 6: 145.[Crossref] [Google Scholar]
  14. Galinski MR, Barnwell JW, Abee CR, Mansfield K, Tardif S, Morris T, , 2012. Chapter 5, Nonhuman primate models for human malaria research. , eds. Nonhuman Primates in Biomedical Research, 2nd edition. Boston, MA: Academic Press, 299323.[Crossref] [Google Scholar]
  15. Joyner C, Moreno A, Meyer EVS, Cabrera-Mora M, Kissinger JC, Barnwell JW, Galinski MR, , 2016. Plasmodium cynomolgi infections in rhesus macaques display clinical and parasitological features pertinent to modelling vivax malaria pathology and relapse infections. Malar J 15: 118.[Crossref] [Google Scholar]
  16. Tachibana S, , 2012. Plasmodium cynomolgi genome sequences provide insight into Plasmodium vivax and the monkey malaria clade. Nat Genet 44: 10511055.[Crossref] [Google Scholar]
  17. Aikawa M, Miller LH, Rabbege J, , 1975. Caveola–vesicle complexes in the plasmalemma of erythrocytes infected by Plasmodium vivax and P cynomolgi. Unique structures related to Schuffner’s dots. Am J Pathol 79: 285300. [Google Scholar]
  18. Akinyi S, Hanssen E, Meyer EV, Jiang J, Korir CC, Singh B, Lapp S, Barnwell JW, Tilley L, Galinski MR, , 2012. A 95 kDa protein of Plasmodium vivax and P. cynomolgi visualized by three-dimensional tomography in the caveola-vesicle complexes (Schuffner’s dots) of infected erythrocytes is a member of the PHIST family. Mol Microbiol 84: 816831.[Crossref] [Google Scholar]
  19. Warren M, Skinner JC, Guinn E, , 1966. Biology of the simian malarias of southeast Asia. I. Host cell preferences of young trophozoites of four species of Plasmodium . J Parasitol 52: 1416.[Crossref] [Google Scholar]
  20. Krotoski WA, Garnham PC, Bray RS, Krotoski DM, Killick-Kendrick R, Draper CC, Targett GA, Guy MW, , 1982. Observations on early and late post-sporozoite tissue stages in primate malaria. I. Discovery of a new latent form of Plasmodium cynomolgi (the hypnozoite), and failure to detect hepatic forms within the first 24 hours after infection. Am J Trop Med Hyg 31: 2435.[Crossref] [Google Scholar]
  21. Dembele L, , 2014. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med 20: 307312.[Crossref] [Google Scholar]
  22. Sutton PL, Luo Z, Divis PC, Friedrich VK, Conway DJ, Singh B, Barnwell JW, Carlton JM, Sullivan SA, , 2016. Characterizing the genetic diversity of the monkey malaria parasite Plasmodium cynomolgi . Infect Genet Evol 40: 243252.[Crossref] [Google Scholar]
  23. Sheehan D.C., HBB, Theory and Practice of Histotechnology. St. Louis, MO: The C.V. Mosby Company. [Google Scholar]
  24. Hayat M, , 1986. Basic Techniques for Transmission Electron Microscopy. San Diego, CA: Elsevier, Inc. [Google Scholar]
  25. Aurrecoechea C, , 2009. PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res 37: D539D543.[Crossref] [Google Scholar]
  26. Sheiban AK, , 1999. Prognosis of malaria associated severe acute renal failure in children. Ren Fail 21: 6366.[Crossref] [Google Scholar]
  27. Fonseca LL, Alezi HS, Moreno A, Barnwell JW, Galinski MR, Voit EO, , 2016. Quantifying the removal of red blood cells in Macaca mulatta during a Plasmodium coatneyi infection. Malar J 15: 115.[Crossref] [Google Scholar]
  28. Jakeman GN, Saul A, Hogarth WL, Collins WE, , 1999. Anaemia of acute malaria infections in non-immune patients primarily results from destruction of uninfected erythrocytes. Parasitology 119: 127233.[Crossref] [Google Scholar]
  29. Fernandez-Arias C, , 2016. Anti-self phosphatidylserine antibodies recognize uninfected erythrocytes promoting malarial anemia. Cell Host Microbe 19: 194203.[Crossref] [Google Scholar]
  30. Abdalla SH, , 1990. Hematopoiesis in human malaria. Blood Cells 16: 401416, discussion 417–419. [Google Scholar]
  31. Wickramasinghe SN, Abdalla SH, , 2000. Blood and bone marrow changes in malaria. Best Pract Res Clin Haematol 13: 277299.[Crossref] [Google Scholar]
  32. Knuttgen HJ, , 1987. The bone marrow of non-immune Europeans in acute malaria infection: a topical review. Ann Trop Med Parasitol 81: 567576.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 11 Sep 2016
  • Accepted : 27 Mar 2017
  • Published online : 05 Jun 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error