Volume 97 Number 3_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Coverage of malaria control interventions is increasing dramatically across endemic countries. Evaluating the impact of malaria control programs and specific interventions on health indicators is essential to enable countries to select the most effective and appropriate combination of tools to accelerate progress or proceed toward malaria elimination. When key malaria interventions have been proven effective under controlled settings, further evaluations of the impact of the intervention using randomized approaches may not be appropriate or ethical. Alternatives to randomized controlled trials are therefore required for rigorous evaluation under conditions of routine program delivery. Routine health management information system (HMIS) data are a potentially rich source of data for impact evaluation, but have been underused in impact evaluation due to concerns over internal validity, completeness, and potential bias in estimates of program or intervention impact. A range of methodologies were identified that have been used for impact evaluations with malaria outcome indicators generated from HMIS data. Methods used to maximize internal validity of HMIS data are presented, together with recommendations on reducing bias in impact estimates. Interrupted time series and dose-response analyses are proposed as the strongest quasi-experimental impact evaluation designs for analysis of malaria outcome indicators from routine HMIS data. Interrupted time series analysis compares the outcome trend and level before and after the introduction of an intervention, set of interventions or program. The dose-response national platform approach explores associations between intervention coverage or program intensity and the outcome at a subnational (district or health facility catchment) level.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2015. World Malaria Report 2015. Geneva, Switzerland: WHO. Available at: http://apps.who.int/iris/bitstream/10665/200018/1/9789241565158_eng.pdf?ua=1. Accessed December 15, 2015.
  2. United States Agency for International Development, 2011. USAID Evaluation Policy. Available at: https://www.usaid.gov/evaluation/policy. Accessed May 18, 2016.
  3. The World Bank, 2016. Poverty Reduction and Equity: Overview of Impact Evaluation. Available at: http://web.worldbank.org/WBSITE/EXTERNAL/TOPICS/EXTPOVERTY/EXTISPMA/0,,menuPK:384339∼pagePK:162100∼piPK:159310∼theSitePK:384329,00.html#whatis. Accessed May 18, 2016.
  4. UK Department for International Development, 2013. International Development Evaluation Policy. Available at: https://www.gov.uk/government/publications/dfid-evaluation-policy-2013. Accessed May 18, 2016.
  5. Habicht JP, Victora CG, Vaughan JP, , 1999. Evaluation designs for adequacy, plausibility and probability of public health programme performance and impact. Int J Epidemiol 28: 1018.[Crossref] [Google Scholar]
  6. Victora CG, Habicht JP, Bryce J, , 2004. Evidence-based public health: moving beyond randomized trials. Am J Public Health 94: 400405.[Crossref] [Google Scholar]
  7. Cornfield J, , 1978. Randomization by group: a formal analysis. Am J Epidemiol 108: 100102.[Crossref] [Google Scholar]
  8. Kirkwood BR, Cousens SN, Victora CG, de Zoysa I, , 1997. Issues in the design and interpretation of studies to evaluate the impact of community-based interventions. Trop Med Int Health 2: 10221029.[Crossref] [Google Scholar]
  9. Victora CG, Black RE, Boerma JT, Bryce J, , 2011. Measuring impact in the Millennium Development Goal era and beyond: a new approach to large-scale effectiveness evaluations. Lancet 377: 8595.[Crossref] [Google Scholar]
  10. Rowe AK, , et al., 2007. Viewpoint: evaluating the impact of malaria control efforts on mortality in sub-Saharan Africa. Trop Med Int Health 12: 15241539.[Crossref] [Google Scholar]
  11. de Savigny D, Binka F, , 2004. Monitoring future impact on malaria burden in sub-saharan Africa. Am J Trop Med Hyg 71: 224231. [Google Scholar]
  12. Gething PW, Noor AM, Goodman CA, Gikandi PW, Hay SI, Sharif SK, Atkinson PM, Snow RW, , 2007. Information for decision making from imperfect national data: tracking major changes in health care use in Kenya using geostatistics. BMC Med 5: 37.[Crossref] [Google Scholar]
  13. Lim SS, Fullman N, Stokes A, Ravishankar N, Masiye F, Murray CJ, Gakidou E, , 2011. Net benefits: a multicountry analysis of observational data examining associations between insecticide-treated mosquito nets and health outcomes. PLoS Med 8: e1001091.[Crossref] [Google Scholar]
  14. Giardina F, Kasasa S, Sie A, Utzinger J, Tanner M, Vounatsou P, , 2014. Effects of vector-control interventions on changes in risk of malaria parasitaemia in sub-Saharan Africa: a spatial and temporal analysis. Lancet Glob Health 2: e601e615.[Crossref] [Google Scholar]
  15. Bhatt S, , et al., 2015. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526: 207211.[Crossref] [Google Scholar]
  16. Wagenaar BH, Sherr K, Fernandes Q, Wagenaar AC, , 2016. Using routine health information systems for well-designed health evaluations in low- and middle-income countries. Health Policy Plan 31: 129135.[Crossref] [Google Scholar]
  17. Kiberu VM, Matovu JK, Makumbi F, Kyozira C, Mukooyo E, Wanyenze RK, , 2014. Strengthening district-based health reporting through the district health management information software system: the Ugandan experience. BMC Med Inform Decis Mak 14: 40.[Crossref] [Google Scholar]
  18. MalERA Consultative Group on Monitoring Evaluation and Surveillance, 2011. A research agenda for malaria eradication: monitoring, evaluation, and surveillance. PLoS Med 8: e1000400.
  19. World Health Organization, 2015. Global Technical Strategy for Malaria 2016–2030. Geneva, Switzerland: WHO. Available at: http://www.who.int/malaria/publications/atoz/9789241564991/en/. Accessed November 18, 2015.
  20. Amouzou A, Kachaka W, Banda B, Chimzimu M, Hill K, Bryce J, , 2013. Monitoring child survival in ‘real time’ using routine health facility records: results from Malawi. Trop Med Int Health 18: 12311239.[Crossref] [Google Scholar]
  21. Lippeveld T, Sauerborn R, Bodart C, , 2000. Design and Implementation of Health Information Systems. Report No. 9789241561990. Geneva, Switzerland: World Health Organization. Available at: http://apps.who.int/iris/bitstream/10665/42289/1/9241561998.pdf. Accessed November 18, 2015.
  22. Yukich JO, Butts J, Miles M, Berhane Y, Nahusenay H, Malone JL, Dissanayake G, Reithinger R, Keating J, , 2014. A description of malaria sentinel surveillance: a case study in Oromia Regional State, Ethiopia. Malar J 13: 88.[Crossref] [Google Scholar]
  23. Bennett A, Avanceña ALV, Wegbreit J, Cotter C, Roberts K, Gosling RD, 2014. Background Paper: The Private Sector’s Role in Malaria Surveillance: Global Health Group, University of California, San Francisco (UCSF). Available at: http://globalhealthsciences.ucsf.edu/sites/default/files/content/ghg/mei-private-sectors-role-in-malaria-surveillance.pdf. Accessed April 19, 2016.
  24. Bennett A, , et al., 2014. A methodological framework for the improved use of routine health system data to evaluate national malaria control programs: evidence from Zambia. Popul Health Metr 12: 30.[Crossref] [Google Scholar]
  25. Comfort AB, , et al., 2014. Hospitalizations and costs incurred at the facility level after scale-up of malaria control: pre-post comparisons from two hospitals in Zambia. Am J Trop Med Hyg 90: 2032.[Crossref] [Google Scholar]
  26. Otten M, , et al., 2009. Initial evidence of reduction of malaria cases and deaths in Rwanda and Ethiopia due to rapid scale-up of malaria prevention and treatment. Malar J 8: 14.[Crossref] [Google Scholar]
  27. Rowe AK, Kachur SP, Yoon SS, Lynch M, Slutsker L, Steketee RW, , 2009. Caution is required when using health facility-based data to evaluate the health impact of malaria control efforts in Africa. Malar J 8: 209.[Crossref] [Google Scholar]
  28. Bonell CP, Hargreaves J, Cousens S, Ross D, Hayes R, Petticrew M, Kirkwood BR, , 2011. Alternatives to randomisation in the evaluation of public health interventions: design challenges and solutions. J Epidemiol Community Health 65: 582587.[Crossref] [Google Scholar]
  29. Chanda E, Coleman M, Kleinschmidt I, Hemingway J, Hamainza B, Masaninga F, Chanda-Kapata P, Baboo KS, Durrheim DN, Coleman M, , 2012. Impact assessment of malaria vector control using routine surveillance data in Zambia: implications for monitoring and evaluation. Malar J 11: 437.[Crossref] [Google Scholar]
  30. Sarrassat S, Senghor P, Le Hesran JY, , 2008. Trends in malaria morbidity following the introduction of artesunate plus amodiaquine combination in M’lomp village dispensary, south-western Senegal. Malar J 7: 215.[Crossref] [Google Scholar]
  31. Gertler PJ, Martinez S, Premand P, Rawlings LB, Vermeersch CMJ, , 2011. Impact Evaluation in Practice. Washington, DC: The World Bank.
  32. Bryce J, Gilroy K, Jones G, Hazel E, Black RE, Victora CG, , 2010. The Accelerated Child Survival and Development programme in West Africa: a retrospective evaluation. Lancet 375: 572582.[Crossref] [Google Scholar]
  33. Maude RJ, et al., 2014. Spatial and temporal epidemiology of clinical malaria in Cambodia 2004–2013. Malar J 13: 385.
  34. Ceesay SJ, , et al., 2008. Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis. Lancet 372: 15451554.[Crossref] [Google Scholar]
  35. Dhimal M, Ahrens B, Kuch U, , 2014. Malaria control in Nepal 1963–2012: challenges on the path towards elimination. Malar J 13: 241.[Crossref] [Google Scholar]
  36. Alba S, Hetzel MW, Nathan R, Alexander M, Lengeler C, , 2011. Assessing the impact of malaria interventions on morbidity through a community-based surveillance system. Int J Epidemiol 40: 405416.[Crossref] [Google Scholar]
  37. Kamuliwo M, , et al., 2013. The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006–2011. Malar J 12: 437.[Crossref] [Google Scholar]
  38. Ngomane L, de Jager C, , 2012. Changes in malaria morbidity and mortality in Mpumalanga Province, South Africa (2001–2009): a retrospective study. Malar J 11: 19.[Crossref] [Google Scholar]
  39. Nyarango PM, , et al., 2006. A steep decline of malaria morbidity and mortality trends in Eritrea between 2000 and 2004: the effect of combination of control methods. Malar J 5: 33.[Crossref] [Google Scholar]
  40. Okiro EA, Hay SI, Gikandi PW, Sharif SK, Noor AM, Peshu N, Marsh K, Snow RW, , 2007. The decline in paediatric malaria admissions on the coast of Kenya. Malar J 6: 151.[Crossref] [Google Scholar]
  41. Okiro EA, Bitira D, Mbabazi G, Mpimbaza A, Alegana VA, Talisuna AO, Snow RW, , 2011. Increasing malaria hospital admissions in Uganda between 1999 and 2009. BMC Med 9: 37.[Crossref] [Google Scholar]
  42. Okiro EA, Kazembe LN, Kabaria CW, Ligomeka J, Noor AM, Ali D, Snow RW, , 2013. Childhood malaria admission rates to four hospitals in Malawi between 2000 and 2010. PLoS One 8: e62214.[Crossref] [Google Scholar]
  43. Penfold RB, Zhang F, , 2013. Use of interrupted time series analysis in evaluating health care quality improvements. Acad Pediatr 13: S38S44.[Crossref] [Google Scholar]
  44. Wagner AK, Soumerai SB, Zhang F, Ross-Degnan D, , 2002. Segmented regression analysis of interrupted time series studies in medication use research. J Clin Pharm Ther 27: 299309.[Crossref] [Google Scholar]
  45. Shadish WR, Cook TD, Campbell DT, , 2002. Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Belmont, CA: Wadsworth Cengage Learning.
  46. Karema C, , et al., 2012. Trends in malaria cases, hospital admissions and deaths following scale-up of anti-malarial interventions, 2000–2010, Rwanda. Malar J 11: 236.[Crossref] [Google Scholar]
  47. Aregawi MW, , et al., 2011. Reductions in malaria and anaemia case and death burden at hospitals following scale-up of malaria control in Zanzibar, 1999–2008. Malar J 10: 46.[Crossref] [Google Scholar]
  48. Aregawi M, , et al., 2014. Time series analysis of trends in malaria cases and deaths at hospitals and the effect of antimalarial interventions, 2001–2011, Ethiopia. PLoS One 9: e106359.[Crossref] [Google Scholar]
  49. Kigozi R, , et al., 2012. Indoor residual spraying of insecticide and malaria morbidity in a high transmission intensity area of Uganda. PLoS One 7: e42857.[Crossref] [Google Scholar]
  50. Landoh ED, Tchamdja P, Saka B, Tint KS, Gitta SN, Wasswa P, , Christiaan de J, 2012. Morbidity and mortality due to malaria in Est Mono district, Togo, from 2005 to 2010: a times series analysis. Malar J 11: 389.[Crossref] [Google Scholar]
  51. Bukirwa H, Yau V, Kigozi R, Filler S, Quick L, Lugemwa M, Dissanayake G, Kamya M, Wabwire-Mangen F, Dorsey G, , 2009. Assessing the impact of indoor residual spraying on malaria morbidity using a sentinel site surveillance system in western Uganda. Am J Trop Med Hyg 81: 611614.[Crossref] [Google Scholar]
  52. Santelli AC, , et al., 2012. Effect of artesunate-mefloquine fixed-dose combination in malaria transmission in Amazon basin communities. Malar J 11: 286.[Crossref] [Google Scholar]
  53. Teklehaimanot HD, Teklehaimanot A, Kiszewski A, Rampao HS, Sachs JD, , 2009. Malaria in São Tomé and Principe: on the brink of elimination after three years of effective antimalarial measures. Am J Trop Med Hyg 80: 133140. [Google Scholar]
  54. Graves PM, , et al., 2008. Effectiveness of malaria control during changing climate conditions in Eritrea, 1998–2003. Trop Med Int Health 13: 218228.[Crossref] [Google Scholar]
  55. Akin JS, Hutchinson P, , 1999. Health-care facility choice and the phenomenon of bypassing. Health Policy Plan 14: 135151.[Crossref] [Google Scholar]
  56. Schuurman N, Fiedler RS, Grzybowski SC, Grund D, , 2006. Defining rational hospital catchments for non-urban areas based on travel-time. Int J Health Geogr 5: 43.[Crossref] [Google Scholar]
  57. Alegana VA, Wright JA, Pentrina U, Noor AM, Snow RW, Atkinson PM, , 2012. Spatial modelling of healthcare utilisation for treatment of fever in Namibia. Int J Health Geogr 11: 6.[Crossref] [Google Scholar]
  58. Alexandrescu R, O’Brien SJ, Lyons RA, Lecky FE, Trauma A, Research N, , 2008. A proposed approach in defining population-based rates of major injury from a trauma registry dataset: delineation of hospital catchment areas (I). BMC Health Serv Res 8: 80.[Crossref] [Google Scholar]
  59. Huff DL, , 1964. Defining and estimating a trading area. J Mark 28: 3438.[Crossref] [Google Scholar]
  60. Luo J, , 2014. Integrating the Huff Model and Floating Catchment Area Methods to analyze spatial access to healthcare services. T GIS 18: 436448.[Crossref] [Google Scholar]
  61. Zinszer K, Charland K, Kigozi R, Dorsey G, Kamya MR, Buckeridge DL, , 2014. Determining health-care facility catchment areas in Uganda using data on malaria-related visits. Bull World Health Organ 92: 178186.[Crossref] [Google Scholar]
  62. Woolhouse ME, , 1998. Patterns in parasite epidemiology: the peak shift. Parasitol Today 14: 428434.[Crossref] [Google Scholar]
  63. NASA Socioeconomic Data and Applications Center (SEDAC), 2016. Gridded Population of the World, v4. Available at: http://sedac.ciesin.columbia.edu/data/collection/gpw-v4. Accessed August 25, 2016.
  64. Chandramohan D, Jaffar S, Greenwood B, , 2002. Use of clinical algorithms for diagnosing malaria. Trop Med Int Health 7: 4552.[Crossref] [Google Scholar]
  65. Rowe AK, de Savigny D, Lanata CF, Victora CG, , 2005. How can we achieve and maintain high-quality performance of health workers in low-resource settings? Lancet 366: 10261035.[Crossref] [Google Scholar]
  66. Larsen DA, Bennett A, Silumbe K, Hamainza B, Yukich JO, Keating J, Littrell M, Miller JM, Steketee RW, Eisele TP, , 2015. Population-wide malaria testing and treatment with rapid diagnostic tests and artemether-lumefantrine in southern Zambia: a community randomized step-wedge control trial design. Am J Trop Med Hyg 92: 913921.[Crossref] [Google Scholar]
  67. Willey BA, Armstrong Schellenberg JR, Maokola W, Shirima K, Chemba M, Mshinda H, Alonso P, Tanner M, Schellenberg D, , 2011. Evaluating the effectiveness of IPTi on malaria using routine health information from sentinel health centres in southern Tanzania. Malar J 10: 41.[Crossref] [Google Scholar]
  68. German RR, Lee LM, Horan JM, Milstein RL, Pertowski CA, Waller MN, ; Guidelines Working Group Centers for Disease Control and Prevention, 2001. Updated guidelines for evaluating public health surveillance systems: recommendations from the Guidelines Working Group. MMWR Recomm Rep 50: 135. [Google Scholar]
  69. Okiro EA, Alegana VA, Noor AM, Mutheu JJ, Juma E, Snow RW, , 2009. Malaria paediatric hospitalization between 1999 and 2008 across Kenya. BMC Med 7: 75.[Crossref] [Google Scholar]
  70. Gething PW, Noor AM, Gikandi PW, Hay SI, Nixon MS, Snow RW, Atkinson PM, , 2008. Developing geostatistical space-time models to predict outpatient treatment burdens from incomplete national data. Geogr Anal 40: 167188.[Crossref] [Google Scholar]
  71. Cibulskis RE, Aregawi M, Williams R, Otten M, Dye C, , 2011. Worldwide incidence of malaria in 2009: estimates, time trends, and a critique of methods. PLoS Med 8: e1001142.[Crossref] [Google Scholar]
  72. Mubiru D, , et al., 2015. Evaluation of integrated community case management in eight districts of central Uganda. PLoS One 10: e0134767.[Crossref] [Google Scholar]
  73. Svoronos T, Mate KS, , 2011. Evaluating large-scale health programmes at a district level in resource-limited countries. Bull World Health Organ 89: 831837.[Crossref] [Google Scholar]
  74. Masanja H, , et al., 2008. Child survival gains in Tanzania: analysis of data from demographic and health surveys. Lancet 371: 12761283.[Crossref] [Google Scholar]
  75. Last JM, 2001. A Dictionary of Epidemiology. 4th ed. New York: Oxford University Press.
  76. Hill AB, , 1965. The environment and disease: association or causation? Proc R Soc Med 58: 295300. [Google Scholar]
  77. Hofler M, , 2005. The Bradford Hill considerations on causality: a counterfactual perspective. Emerg Themes Epidemiol 2: 11.[Crossref] [Google Scholar]
  78. Rowe AK, Onikpo F, Lama M, Osterholt DM, Deming MS, , 2011. Impact of a malaria-control project in Benin that included the integrated management of childhood illness strategy. Am J Public Health 101: 23332341.[Crossref] [Google Scholar]
  79. Bryce J, Victora CG, Habicht JP, Vaughan JP, Black RE, , 2004. The multi-country evaluation of the integrated management of childhood illness strategy: lessons for the evaluation of public health interventions. Am J Public Health 94: 406415.[Crossref] [Google Scholar]
  80. Ye Y, , et al., 2017. Framework for evaluating the health impact of the scale-up of malaria control interventions on all-cause child mortality in sub-Saharan Africa. Am J Trop Med Hyg 97 (Suppl 3): 919. [Google Scholar]
  81. Bhattarai A, , et al., 2007. Impact of artemisinin-based combination therapy and insecticide-treated nets on malaria burden in Zanzibar. PLoS Med 4: e309.[Crossref] [Google Scholar]
  82. Johansson EW, Gething PW, Hildenwall H, Mappin B, Petzold M, Peterson SS, Selling KE, , 2015. Effect of diagnostic testing on medicines used by febrile children less than five years in 12 malaria-endemic African countries: a mixed-methods study. Malar J 14: 194.[Crossref] [Google Scholar]
  83. Snow RW, Kibuchi E, Karuri SW, Sang G, Gitonga CW, Mwandawiro C, Bejon P, Noor AM, , 2015. Changing malaria prevalence on the Kenyan Coast since 1974: climate, drugs and vector control. PLoS One 10: e0128792.[Crossref] [Google Scholar]
  84. Pindolia DK, Garcia AJ, Wesolowski A, Smith DL, Buckee CO, Noor AM, Snow RW, Tatem AJ, , 2012. Human movement data for malaria control and elimination strategic planning. Malar J 11: 205.[Crossref] [Google Scholar]
  85. Tatem AJ, , et al., 2014. Integrating rapid risk mapping and mobile phone call record data for strategic malaria elimination planning. Malar J 13: 52.[Crossref] [Google Scholar]
  86. Hay SI, Omumbo JA, Craig MH, Snow RW, , 2000. Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Adv Parasitol 47: 173215.[Crossref] [Google Scholar]
  87. Weiss DJ, Mappin B, Dalrymple U, Bhatt S, Cameron E, Hay SI, Gething PW, , 2015. Re-examining environmental correlates of Plasmodium falciparum malaria endemicity: a data-intensive variable selection approach. Malar J 14: 68.[Crossref] [Google Scholar]
  88. Gething PW, Patil AP, Smith DL, Guerra CA, Elyazar IRF, Johnston GL, Tatem AJ, Hay SI, , 2011. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 10: 378.[Crossref] [Google Scholar]
  89. Malaria Atlas Project, 2016. Malaria Endemicity Maps. Available at: http://www.map.ox.ac.uk/browse-resources/?region=&country=&topic=endemicity&subtopic=. Accessed April 19, 2016.
  90. Moyes CL, Temperley WH, Henry AJ, Burgert CR, Hay SI, , 2013. Providing open access data online to advance malaria research and control. Malar J 12: 161.[Crossref] [Google Scholar]
  91. Larsen DA, Hutchinson P, Bennett A, Yukich J, Anglewicz P, Keating J, Eisele TP, , 2014. Community coverage with insecticide-treated mosquito nets and observed associations with all-cause child mortality and malaria parasite infections. Am J Trop Med Hyg 91: 950958.[Crossref] [Google Scholar]
  92. Eisele TP, Larsen DA, Anglewicz PA, Keating J, Yukich J, Bennett A, Hutchinson P, Steketee RW, , 2012. Malaria prevention in pregnancy, birthweight, and neonatal mortality: a meta-analysis of 32 national cross-sectional datasets in Africa. Lancet Infect Dis 12: 942949.[Crossref] [Google Scholar]
  93. Zeger SL, Irizarry R, Peng RD, , 2006. On time series analysis of public health and biomedical data. Annu Rev Public Health 27: 5779.[Crossref] [Google Scholar]
  94. Abeku TA, de Vlas SJ, Borsboom G, Teklehaimanot A, Kebede A, Olana D, van Oortmarssen GJ, Habbema JDF, , 2002. Forecasting malaria incidence from historical morbidity patterns in epidemic-prone areas of Ethiopia: a simple seasonal adjustment method performs best. Trop Med Int Health 7: 851857.[Crossref] [Google Scholar]
  95. Alegana VA, Atkinson PM, Wright JA, Kamwi R, Uusiku P, Katokele S, Snow RW, Noor AM, , 2013. Estimation of malaria incidence in northern Namibia in 2009 using Bayesian conditional-autoregressive spatial-temporal models. Spat Spatio-Temporal Epidemiol 7: 2536.[Crossref] [Google Scholar]
  96. Louis VR, , et al., 2015. An insecticide-treated bed-net campaign and childhood malaria in Burkina Faso. Bull World Health Organ 93: 750758.[Crossref] [Google Scholar]
  97. Maes P, Harries AD, Van den Bergh R, Noor A, Snow RW, Tayler-Smith K, Hinderaker SG, Zachariah R, Allan R, , 2014. Can timely vector control interventions triggered by atypical environmental conditions prevent malaria epidemics? A case-study from Wajir County, Kenya. PLoS One 9: e92386.[Crossref] [Google Scholar]
  98. Masaninga F, , et al., 2013. Review of the malaria epidemiology and trends in Zambia. Asian Pac J Trop Biomed 3: 8994.[Crossref] [Google Scholar]
  99. Thang ND, Erhart A, , Hung le X, Thuan le K, Xa NX, Thanh NN, Ky PV, Coosemans M, Speybroeck N, D’Alessandro U, 2009. Rapid decrease of malaria morbidity following the introduction of community-based monitoring in a rural area of central Vietnam. Malar J 8: 3.[Crossref] [Google Scholar]
  100. Yapabandara MA, Sarmento R, de Fatima Mota Mdo R, , don Bosco J, Martins N, Wickremasinghe AR, 2015. Evidence-based malaria control in Timor Leste from 2006 to 2012. Malar J 14: 109.[Crossref] [Google Scholar]
  101. Konchom S, Singhasivanon P, Kaewkungwal J, Chupraphawan S, Thimasarn K, Kidson C, Rojanawatsirivet C, Yimsamran S, Looareesuwan S, , 2003. Trend of malaria incidence in highly endemic provinces along the Thai borders, 1991–2001. Southeast Asian J Trop Med Public Health 34: 486494. [Google Scholar]
  102. Mufunda J, , et al., 2007. Roll back malaria—an African success story in Eritrea. S Afr Med J 97: 4650. [Google Scholar]
  103. Mukonka VM, , et al., 2014. High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malar J 13: 153.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 09 Sep 2016
  • Accepted : 24 Oct 2016
  • Published online : 27 Sep 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error