Volume 97, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is one of the major malaria vectors and among the dominant species in Hainan Province, China. The resistance of to insecticides is an important threat to malaria control. However, few reports on insecticide resistance of were reported in this area. Eight districts in Hainan Province were selected as the study areas. Insecticide susceptibility bioassays were tested on wild-caught female mosquitoes of to 4% dichlorodiphenyltrichloroethane (DDT), 0.05% deltamethrin, and 5% malathion by using the World Health Organization standard resistance tube assay procedure. All the tested mosquitoes demonstrated resistance to 4% DDT, with less than 72% mortality in the standard assay. The populations from Baisha and Qiongzhong demonstrated possible resistance to 0.05% deltamethrin, with 94–95% mortality, whereas the populations from other districts demonstrated resistance to 0.05% deltamethrin in the standard assay. The populations from Baisha, Qiongzhong, and Dongfang demonstrated susceptibility to 5% malathion, but the populations from other districts demonstrated resistance. These results facilitate the improvement of effective control strategies for malaria vector mosquitoes in Hainan.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Sheng H, Zhou S, Gu Z, Zheng X, , 2003. Malaria situation in the People’s Republic of China in 2002. Chin J Parasitol Parasit Dis 21: 193196. [Google Scholar]
  2. Sun DW, Wang F, Wang SQ, Hu XM, Wang GZ, Zeng LH, Li SG, Cai HL, Lin SX, Liu Y, , 2012. Distribution of anopheline mosquitoes (Diptera: Culicidae) in five cities/counties of Hainan Province. China Trop Med 12: 160162. [Google Scholar]
  3. Bortel VW, Trung HD, Thuanle K, Sochantha T, Socheat D, Sumrandee C, Baimai V, Keokenchanh K, Samlane P, Roelants P, Denis L, Verhaeghen K, Obsomer V, Coosemans M, , 2008. The insecticide resistance status of malaria vectors in the Mekong region. Malar J 7: 102.[Crossref] [Google Scholar]
  4. Sun DW, Du JW, Wang GZ, Li YC, He CH, Xue RD, Wang SQ, Hu XM, , 2015. A Cost-effectiveness analysis of Plasmodium falciparum malaria elimination in Hainan Province, 2002–2012. Am J Trop Med Hyg 93: 12401248.[Crossref] [Google Scholar]
  5. Cai XZ, , 2009. Residual spraying of DDT to be an effectively interventional measure in malaria control. China Trop Med 9: 19571960. [Google Scholar]
  6. Cai XZ, , 1993. Anti-malaria in Hainan from 1952–1992. Hainan Med 4: 1–3, 6263. [Google Scholar]
  7. Dai YH, Huang XD, Cheng P, Liu LJ, Wang HF, Qang HW, Kou JX, , 2015. Development of insecticide resistance in malaria vector Anopheles sinensis populations from Shandong Province in China. Malar J 14: 62.[Crossref] [Google Scholar]
  8. Ministry of Health Disease Prevention and Control Bureau, 2007: Handbook for Malaria Control and Prevention. Beijing, China: People’s Hygiene Publishing House Press, 6370. [Google Scholar]
  9. World Health Organization, 2013: Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. Geneva, Switzerland: World Health Organization. [Google Scholar]
  10. Miller TA, , 1988. Mechanisms of resistance to pyrethroid insecticides. Parasitol Today 4: 813.[Crossref] [Google Scholar]
  11. Etang J, Manga L, Chandre F, Guillet P, Fondjo E, Mimpfoundi R, Toto JC, Fontenille D, , 2003. Insecticide susceptibility status of Anopheles gambiae s.l. (Diptera: Culicidae) in the Republic of Cameroon. J Med Entomol 40: 491497.[Crossref] [Google Scholar]
  12. Etang J, Fondjo E, Chandre F, Eorlais I, Brengues C, Nwane P, Chouaibou M, Ndjemal H, Simard F, , 2006. First report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. Am J Trop Med Hyg 74: 795797. [Google Scholar]
  13. Nwane P, Etang J, Chouaibou M, Toto JC, Kerah-Hinzoumbé C, Mimpfoundi R, Awono-Ambene HP, Simard F, , 2009. Trends in DDT and pyrethroid resistance in Anopheles gambiae s.s. populations from urban and agro-industrial settings in southern Cameroon. BMC Infect Dis 9: 163.[Crossref] [Google Scholar]
  14. Abdalla H, Matambo TS, Koekemoer LL, , 2008. Insecticide susceptibility and vector status of natural populations of Anopheles arabiensis from Sudan. Trans R Soc Trop Med Hyg 102: 263271.[Crossref] [Google Scholar]
  15. Wang DQ, Xia ZG, Zhou SS, Zhou XN, Wang RB, Zhang QF, , 2013. A potential threat to malaria elimination: extensive deltamethrin and DDT resistance to Anopheles sinensis from the malaria-endemic areas in China. Malar J 12: 164.[Crossref] [Google Scholar]
  16. Perera MDB, Hemingway J, Karunaratne SHPP, , 2008. Multiple insecticide resistance mechanisms involving metabolic changes and insensitive target sites selected in anopheline vectors of malaria in Sri Lanka. Malar J 7: 168.[Crossref] [Google Scholar]
  17. Mzilahowa T, Ball AJ, Bass C, Morgan JC, Nyoni B, Steen K, Donnelly MJ, Wilding CS, , 2008. Reduced susceptibility to DDT in field populations of Anopheles quadriannulatus and Anopheles arabiensis in Malawi: evidence for larval selection. Med Vet Entomol 22: 258263.[Crossref] [Google Scholar]
  18. Diabate A, Baldet T, Chandre F, Akogbeto M, Guiguemde TR, Darriet F, Brengues C, Guillet P, Hemingway J, Small GJ, Hougard JM, , 2002. The role of agricultural use of insecticide in resistance to pyrethroids in Anopheles gambiae s.l. in Burkina Faso. Am J Trop Med Hyg 67: 617622.[Crossref] [Google Scholar]
  19. Hua XM, Shan ZJ, , 1996. The production and application of pesticides and factor analysis of their pollution in environment in China. Adv Environ Sci 4: 3345. [Google Scholar]
  20. Hemingway J, Hawkes NJ, McCarroll L, Ranson H, , 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol Biol 34: 653665.[Crossref] [Google Scholar]
  21. Qin Q, Li J, Zhong D, Zhou N, Chang X, Li C, Cui L, Yan G, Chen X, , 2014. Insecticide resistance of Anopheles sinensis and An. vagus in Hainan Island, a malaria-endemic area of China. Parasit Vectors 7: 92.[Crossref] [Google Scholar]
  22. Zeng LH, Wang SQ, Sun DW, Zhao W, Li SG, Yang X, , 2011. Resistance assay of malaria vector to four kinds of common insecticides in some endemic areas of Hainan Province. Chin J Parasitol Parasit Dis 29: 200203. [Google Scholar]
  23. Utzinger J, Tozan Y, Singer BH, , 2001. Efficacy and cost-effectiveness of environmental management for malaria control. Trop Med Int Health 6: 677687.[Crossref] [Google Scholar]
  24. Yang W, Xu GJ, Chen HL, Yan JC, Feng SZ, Liu SP, Xu ZZ, , 2003. Investigation of impact of the ecologic environmental and social economic factors on malaria in areas with Anopheles anthropophagus as vector in Sichuan. China Trop Med 3: 8688. [Google Scholar]
  25. Ogoma SB, Kannady K, Sikulu M, Chaki PP, Govella NJ, Mukabana WR, Killeen GF, , 2009. Window screening, ceilings and closed eaves as sustainable ways to control malaria in Dar es Salaam, Tanzania. Malar J 8: 221.[Crossref] [Google Scholar]
  26. Blanford S, Jenkins NE, Christian R, Chan BHK, Nardini L, Osae M, Koekemoer L, Coetzee M, Read AF, Thomas MB, , 2012. Storage and persistence of a candidate fungal biopesticide for use against adult malaria vectors. Malar J 11: 354.[Crossref] [Google Scholar]
  27. Fu MY, Wang Y, Yu SS, Zhong M, Ai GP, Zhao Q, , 2014. Killing effect of Bacillus thuringiensis israelensis on larvae of Anopheles stephensi . China Trop Med 14: 10311034. [Google Scholar]
  28. Wilke ABB, Marrelli MT, , 2015. Paratransgenesis: a promising new strategy for mosquito vector control. Parasit Vectors 8: 342.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 06 Sep 2016
  • Accepted : 15 Mar 2017
  • Published online : 24 Apr 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error