Volume 96, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Here we apply inter-simple sequence repeat (ISSR) markers to explore the fine-scale genetic structure and dispersal in populations of . Five selected primers from 30 primers were used to amplify ISSRs by polymerase chain reaction. A total of 90 polymorphic bands were detected across 134 individuals captured from 11 peridomestic sites from the locality of San Martín (Capayán Department, Catamarca Province, Argentina). Significant levels of genetic differentiation suggest limited gene flow among sampling sites. Spatial autocorrelation analysis confirms that dispersal occurs on the scale of ∼469 m, suggesting that insecticide spraying should be extended at least within a radius of ∼500 m around the infested area. Moreover, Bayesian clustering algorithms indicated genetic exchange among different sites analyzed, supporting the hypothesis of an important role of peridomestic structures in the process of reinfestation.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Pérez de Rosas AR, Segura EL, García BA, , 2007. Microsatellite analysis of genetic structure in natural Triatoma infestans (Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas' disease vector control programmes. Mol Ecol 16: 14011412.[Crossref] [Google Scholar]
  2. Pérez de Rosas AR, Segura EL, Fichera L, García BA, , 2008. Macrogeographic and microgeographic genetic structure of the Chagas' disease vector Triatoma infestans (Hemiptera: Reduviidae) from Catamarca, Argentina. Genetica 133: 247260.[Crossref] [Google Scholar]
  3. Pérez de Rosas AR, Segura EL, García BA, , 2011. Molecular phylogeography of the Chagas' disease vector Triatoma infestans in Argentina. Heredity 107: 7179.[Crossref] [Google Scholar]
  4. Pérez de Rosas AR, Segura EL, Bareiro Guiñazú AL, Fusco O, García BA, , 2013. Fine-scale genetic structure in populations of Triatoma infestans (Hemiptera, Reduviidae). Genetica 141: 107117.[Crossref] [Google Scholar]
  5. Marcet PL, Mora MS, Cutrera AP, Jones L, Gürtler RE, Kitron U, Dotson EM, , 2008. Genetic structure of Triatoma infestans populations in rural communities of Santiago del Estero, northern Argentina. Infect Genet Evol 8: 835846.[Crossref] [Google Scholar]
  6. Pizarro JC, Gilligan LM, Stevens L, , 2008. Microsatellites reveal a high population structure in Triatoma infestans from Chuquisaca, Bolivia. PLoS Negl Trop Dis 2: e202.[Crossref] [Google Scholar]
  7. Piccinali RV, Gürtler RE, , 2015. Fine-scale genetic structure of Triatoma infestans in the Argentine Chaco. Infect Genet Evol 34: 143152.[Crossref] [Google Scholar]
  8. Zietkiewicz E, Rafalski A, Labuda D, , 1994. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20: 176183.[Crossref] [Google Scholar]
  9. Peakall R, Smouse PE, Huff DR, , 1995. Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dactyloides . Mol Ecol 4: 135147.[Crossref] [Google Scholar]
  10. Meirmans PG, , 2006. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 60: 23992402.[Crossref] [Google Scholar]
  11. Wright S, , 1951. The genetical structure of populations. Ann Hum Genet 15: 323354. [Google Scholar]
  12. Peakall R, Smouse PE, , 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28: 25372539.[Crossref] [Google Scholar]
  13. Pritchard JK, Stephens M, Donnelly P, , 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945959. [Google Scholar]
  14. Evanno G, Regnaut S, Goudet J, , 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 26112620.[Crossref] [Google Scholar]
  15. Peakall R, Ruibal M, Lindenmayer DB, , 2003. Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes . Evolution 57: 11821195.[Crossref] [Google Scholar]
  16. Soliani C, Rondan-Dueñas J, Chiappero MB, Martínez M, Da Rosa EG, Gardenal CN, , 2010. Genetic relationships among populations of Aedes aegypti from Uruguay and northeastern Argentina inferred from ISSR-PCR data. Med Vet Entomol 24: 316323. [Google Scholar]
  17. Mendki MJ, Sharma AK, Veer V, Agrawal OP, Prakash S, Parashar BD, , 2011. Population genetic structure of Culex quinquefasciatus in India by ISSR marker. Asian Pac J Trop Med 4: 357362.[Crossref] [Google Scholar]
  18. Schofield CJ, Lehane MJ, McEwen P, Catala SS, Gorla DE, , 1992. Dispersive flight by Triatoma infestans under natural climatic conditions in Argentina. Med Vet Entomol 6: 5156.[Crossref] [Google Scholar]
  19. Lehane MJ, McEwen PK, Whitaker CJ, Schofield CJ, , 1992. The role of temperature and nutritional status in flight initiation by Triatoma infestans . Acta Trop 52: 2738.[Crossref] [Google Scholar]
  20. Gürtler RE, Canale DM, Spillmann C, Stariolo R, Salomón OD, Blanco S, Segura EL, , 2004. Effectiveness of residual spraying of peridomestic ecotopes with deltamethrin and permethrin on Triatoma infestans in rural western Argentina: a district-wide randomized trial. Bull World Health Organ 82: 196205. [Google Scholar]

Data & Media loading...

Supplemental Tables

  • Received : 01 Sep 2016
  • Accepted : 02 Dec 2016
  • Published online : 23 Jan 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error