Volume 96, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Yellow fever virus (YFV) has emerged as the causative agent of a vector-borne disease with devastating mortality in the tropics of Africa and the Americas. YFV phylogenies indicate that the isolates collected from West Africa, East and Central Africa, and South America cluster into different lineages and the virus spread into the Americas from Africa. To determine the nature of genetic variation accompanying the intercontinental epidemic, we performed a genome-wide evolutionary study on the West African and South American lineages of YFV. Our results reveal that adaptive genetic diversification has occurred on viral nonstructural protein 5 (NS5), which is crucially required for viral genome replication, in the early epidemic phase of these currently circulating lineages. Furthermore, major amino acid changes relevant to the adaptive diversification generally cluster in different structural regions of NS5 in a lineage-specific manner. These results suggest that YFV has experienced adaptive diversification in the epidemic spread between the continents and shed insights into the genetic determinants of such diversification, which might be beneficial for understanding the emergence and re-emergence of yellow fever as an important global public health issue.


Article metrics loading...

Loading full text...

Full text loading...



  1. Scott HH, , 1939. A History of Tropical Medicine. Based on the Fitzpatrick Lectures Delivered Before the Royal College of Physicians of London 1937–38. London, UK: Edward Arnold and Co.
  2. Monath TP, , 1988. The Arboviruses: Epidemiology and Ecology, Vol. V. Boca Raton, FL: CRC Press.
  3. WHO, 2016. Yellow Fever. Geneva, Switzerland: World Health Organizaiton. Available at: http://www.who.int/mediacentre/factsheets/fs100/en/. Accessed May 1, 2016.
  4. Chambers TJ, Hahn CS, Galler R, Rice CM, , 1990. Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44: 649688.[Crossref]
  5. Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH, , 1985. Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229: 726733.[Crossref]
  6. King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ, , 2012. Family - Flaviviridae. Virus Taxonomy. San Diego, CA: Elsevier, 10031020.
  7. Adams MJ, Lefkowitz EJ, King AM, Carstens EB, , 2013. Recently agreed changes to the international code of virus classification and nomenclature. Arch Virol 158: 26332639.[Crossref]
  8. Stapleton JT, Foung S, Muerhoff AS, Bukh J, Simmonds P, , 2011. The GB viruses: A review and proposed classification of GBV-A, GBV-C (HGV), and GBV-D in genus Pegivirus within the family Flaviviridae. J Gen Virol 92: 233246.[Crossref]
  9. Mutebi JP, Wang H, Li L, Bryant JE, Barrett AD, , 2001. Phylogenetic and evolutionary relationships among yellow fever virus isolates in Africa. J Virol 75: 69997008.[Crossref]
  10. Chang GJ, Cropp BC, Kinney RM, Trent DW, Gubler DJ, , 1995. Nucleotide sequence variation of the envelope protein gene identifies two distinct genotypes of yellow fever virus. J Virol 69: 57735780.
  11. Bryant JE, Holmes EC, Barrett AD, , 2007. Out of Africa: a molecular perspective on the introduction of yellow fever virus into the Americas. PLoS Pathog 3: e75.[Crossref]
  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG, , 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 48764882.[Crossref]
  13. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, , 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.[Crossref]
  14. Lanave C, Preparata G, Saccone C, Serio G, , 1984. A new method for calculating evolutionary substitution rates. J Mol Evol 20: 8693.[Crossref]
  15. Jukes TH, Cantor CR, Munro HN, , 1969. Chapter 24, Evolution of Protein Molecules . , ed. Mammalian Protein Metabolism. New York, NY: Academic Press, 21132.[Crossref]
  16. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B, , 2015. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evolution 1: 15.[Crossref]
  17. Martin DP, Posada D, Crandall KA, Williamson C, , 2005. A modified bootscan algorithm for automated identification of recombinant sequences and recombination breakpoints. AIDS Res Hum Retroviruses 21: 98102.[Crossref]
  18. Padidam M, Sawyer S, Fauquet CM, , 1999. Possible emergence of new geminiviruses by frequent recombination. Virology 265: 218225.[Crossref]
  19. Smith JM, , 1992. Analyzing the mosaic structure of genes. J Mol Evol 34: 126129.
  20. Martin D, Rybicki E, , 2000. RDP: detection of recombination amongst aligned sequences. Bioinformatics 16: 562563.[Crossref]
  21. Gibbs MJ, Armstrong JS, Gibbs AJ, , 2000. Sister-scanning: a Monte Carlo procedure for assessing signals in recombinant sequences. Bioinformatics 16: 573582.[Crossref]
  22. McDonald JH, Kreitman M, , 1991. Adaptive protein evolution at the Adh locus in Drosophila. Nature 351: 652654.[Crossref]
  23. McDonald JH, , 2009. Handbook of Biological Statistics. Baltimore, MD: Sparky House Publishing.
  24. Lole KS, Bollinger RC, Paranjape RS, Gadkari D, Kulkarni SS, Novak NG, Ingersoll R, Sheppard HW, Ray SC, , 1999. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol 73: 152160.
  25. Li W-H, Nei M, Koehn RK, , 1983. Evolution of duplicate genes and pseudo genes. , eds. Evolution of Genes and Proteins. Sunderland, MA: Sinauer Associates, 1437.
  26. Gu X, , 2006. A simple statistical method for estimating type-II (cluster-specific) functional divergence of protein sequences. Mol Biol Evol 23: 19371945.[Crossref]
  27. Gu X, Zou Y, Su Z, Huang W, Zhou Z, Arendsee Z, Zeng Y, , 2013. An update of DIVERGE software for functional divergence analysis of protein family. Mol Biol Evol 30: 17131719.[Crossref]
  28. Li W-H, , 1997. Molecular Evolution. Sunderland, MA: Sinauer Associates.
  29. McGee CE, Tsetsarkin KA, Guy B, Lang J, Plante K, Vanlandingham DL, Higgs S, , 2011. Stability of yellow fever virus under recombinatory pressure as compared with chikungunya virus. PLoS One 6: e23247.[Crossref]
  30. Jenkins GM, Rambaut A, Pybus OG, Holmes EC, , 2002. Rates of molecular evolution in RNA viruses: a quantitative phylogenetic analysis. J Mol Evol 54: 156165.[Crossref]
  31. Fay JC, Wyckoff GJ, Wu CI, , 2001. Positive and negative selection on the human genome. Genetics 158: 12271234.
  32. Eyre-Walker A, , 2006. The genomic rate of adaptive evolution. Trends Ecol Evol 21: 569575.[Crossref]
  33. Nielsen R, , 2001. Statistical tests of selective neutrality in the age of genomics. Heredity (Edinb) 86: 641647.[Crossref]
  34. Koonin EV, , 1993. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J Gen Virol 74: 733740.[Crossref]
  35. Koonin EV, , 1991. The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72: 21972206.[Crossref]
  36. Cleaves GR, Dubin DT, , 1979. Methylation status of intracellular dengue type 2 40 S RNA. Virology 96: 159165.[Crossref]
  37. Davidson AD, , 2009. Chapter 2. New insights into flavivirus nonstructural protein 5. Adv Virus Res 74: 41101.[Crossref]
  38. Chu PW, Westaway EG, , 1987. Characterization of Kunjin virus RNA-dependent RNA polymerase: reinitiation of synthesis in vitro. Virology 157: 330337.[Crossref]
  39. Geiss BJ, Thompson AA, Andrews AJ, Sons RL, Gari HH, Keenan SM, Peersen OB, , 2009. Analysis of flavivirus NS5 methyltransferase cap binding. J Mol Biol 385: 16431654.[Crossref]
  40. Lu G, Gong P, , 2013. Crystal structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9: e1003549.[Crossref]
  41. Malet H, Egloff MP, Selisko B, Butcher RE, Wright PJ, Roberts M, Gruez A, Sulzenbacher G, Vonrhein C, Bricogne G, Mackenzie JM, Khromykh AA, Davidson AD, Canard B, , 2007. Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282: 1067810689.[Crossref]
  42. Yap TL, Xu T, Chen YL, Malet H, Egloff MP, Canard B, Vasudevan SG, Lescar J, , 2007. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81: 47534765.[Crossref]
  43. Buckley A, Gaidamovich S, Turchinskaya A, Gould EA, , 1992. Monoclonal antibodies identify the NS5 yellow fever virus non-structural protein in the nuclei of infected cells. J Gen Virol 73: 11251130.[Crossref]
  44. Li Y, Yang Z, , 2015. Episodic adaptive diversification of classical swine fever virus RNA-dependent RNA polymerase NS5B. Can J Microbiol 61: 948954.[Crossref]
  45. Li Y, Wang R, Du X, Zhang M, Xie M, , 2016. Genome-wide analysis for identification of adaptive diversification between hepatitis C virus subtypes 1a and 1b. Can J Microbiol 62: 608616.[Crossref]
  46. Bhattacharya D, Mayuri Best SM, Perera R, Kuhn RJ, Striker R, , 2009. Protein kinase G phosphorylates mosquito-borne flavivirus NS5. J Virol 83: 91959205.[Crossref]
  47. Bhattacharya D, Ansari IH, Striker R, , 2009. The flaviviral methyltransferase is a substrate of Casein Kinase 1. Virus Res 141: 101104.[Crossref]
  48. Kao YT, Chang BL, Liang JJ, Tsai HJ, Lee YL, Lin RJ, Lin YL, , 2015. Japanese encephalitis virus nonstructural protein NS5 interacts with mitochondrial trifunctional protein and impairs fatty acid beta-oxidation. PLoS Pathog 11: e1004750.[Crossref]
  49. Melik W, Ellencrona K, Wigerius M, Hedstrom C, Elvang A, Johansson M, , 2012. Two PDZ binding motifs within NS5 have roles in Tick-borne encephalitis virus replication. Virus Res 169: 5462.[Crossref]
  50. Werme K, Wigerius M, Johansson M, , 2008. Tick-borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK-STAT signalling. Cell Microbiol 10: 696712.[Crossref]
  51. Johansson M, Brooks AJ, Jans DA, Vasudevan SG, , 2001. A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-beta and the viral helicase, NS3. J Gen Virol 82: 735745.[Crossref]
  52. Qing M, Yang F, Zhang B, Zou G, Robida JM, Yuan Z, Tang H, Shi PY, , 2009. Cyclosporine inhibits flavivirus replication through blocking the interaction between host cyclophilins and viral NS5 protein. Antimicrob Agents Chemother 53: 32263235.[Crossref]
  53. Ye J, Chen Z, Zhang B, Miao H, Zohaib A, Xu Q, Chen H, Cao S, , 2013. Heat shock protein 70 is associated with replicase complex of Japanese encephalitis virus and positively regulates viral genome replication. PLoS One 8: e75188.[Crossref]
  54. Morais AT, Terzian AC, Duarte DV, Bronzoni RV, Madrid MC, Gavioli AF, Gil LH, Oliveira AG, Zanelli CF, Valentini SR, Rahal P, Nogueira ML, , 2013. The eukaryotic translation initiation factor 3 subunit L protein interacts with flavivirus NS5 and may modulate yellow fever virus replication. Virol J 10: 503509.[Crossref]
  55. Bronzoni RV, Madrid MC, Duarte DV, Pellegrini VO, Pacca CC, Carmo AC, Zanelli CF, Valentini SR, Santacruz-Perez C, Barbosa JA, Lutz CS, Rahal P, Nogueira ML, , 2011. The small nuclear ribonucleoprotein U1A interacts with NS5 from yellow fever virus. Arch Virol 156: 931938.[Crossref]
  56. Selisko B, Wang C, Harris E, Canard B, , 2014. Regulation of flavivirus RNA synthesis and replication. Curr Opin Virol 9: 7483.[Crossref]
  57. Brinton MA, , 2013. Replication cycle and molecular biology of the West Nile virus. Viruses 6: 1353.[Crossref]
  58. Hanley KA, Monath TP, Weaver SC, Rossi SL, Richman RL, Vasilakis N, , 2013. Fever versus fever: the role of host and vector susceptibility and interspecific competition in shaping the current and future distributions of the sylvatic cycles of dengue virus and yellow fever virus. Infect Genet Evol 19: 292311.[Crossref]
  59. Carrington CV, Auguste AJ, , 2013. Evolutionary and ecological factors underlying the tempo and distribution of yellow fever virus activity. Infect Genet Evol 13: 198210.[Crossref]
  60. Ashour J, Laurent-Rolle M, Shi PY, Garcia-Sastre A, , 2009. NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83: 54085418.[Crossref]
  61. Pisanelli G, Laurent-Rolle M, Morrison J, Garcia-Sastre A, , 2015. ID: 121: STAT2 is a determinant of yellow fever virus host tropism. Cytokine 76: 88.[Crossref]
  62. Lin RJ, Chang BL, Yu HP, Liao CL, Lin YL, , 2006. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol 80: 59085918.[Crossref]
  63. Laurent-Rolle M, Boer EF, Lubick KJ, Wolfinbarger JB, Carmody AB, Rockx B, Liu W, Ashour J, Shupert WL, Holbrook MR, Barrett AD, Mason PW, Bloom ME, Garcia-Sastre A, Khromykh AA, Best SM, , 2010. The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol 84: 35033515.[Crossref]
  64. Finlay BB, McFadden G, , 2006. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124: 767782.[Crossref]
  65. Pan American Health Organization, 2005. Control of Yellow Fever: Field Guide. Washington, DC: PAHO Scientific and Technical Publication.
  66. Gubler DJ, , 2004. The changing epidemiology of yellow fever and dengue, 1900 to 2003: full circle? Comp Immunol Microbiol Infect Dis 27: 319330.[Crossref]
  67. WHO, 2015. Immunization Coverage. Geneva, Switzerland: World Health Organization. Available at: http://www.who.int/immunization/monitoring_surveillance/routine/coverage/en/index4.html. Accessed July 15, 2016.

Data & Media loading...

  • Received : 25 Aug 2016
  • Accepted : 10 Nov 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error