Volume 97 Number 3_Suppl
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Since 2010, the Roll Back Malaria (RBM) Partnership, including National Malaria Control Programs, donor agencies (e.g., President's Malaria Initiative and Global Fund), and other stakeholders have been evaluating the impact of scaling up malaria control interventions on all-cause under-five mortality in several countries in sub-Saharan Africa. The evaluation framework assesses whether the deployed interventions have had an impact on malaria morbidity and mortality and requires consideration of potential nonintervention influencers of transmission, such as drought/floods or higher temperatures. Herein, we assess the likely effect of climate on the assessment of the impact malaria interventions in 10 priority countries/regions in eastern, western, and southern Africa for the President's Malaria Initiative. We used newly available quality controlled Enhanced National Climate Services rainfall and temperature products as well as global climate products to investigate likely impacts of climate on malaria evaluations and test the assumption that changing the baseline period can significantly impact on the influence of climate in the assessment of interventions. Based on current baseline periods used in national malaria impact assessments, we identify three countries/regions where current evaluations may overestimate the impact of interventions (Tanzania, Zanzibar, Uganda) and three countries where current malaria evaluations may underestimate the impact of interventions (Mali, Senegal and Ethiopia). In four countries (Rwanda, Malawi, Mozambique, and Angola) there was no strong difference in climate suitability for malaria in the pre- and post-intervention period. In part, this may be due to data quality and analysis issues.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Rowe AK, , Roll Back Malaria Monitoring and Evaluation Reference Group, 2007. Viewpoint: evaluating the impact of malaria control efforts on mortality in sub-Saharan Africa. Trop Med Int Health 12: 15241539.[Crossref] [Google Scholar]
  2. Y, , 2017. Framework for evaluating the health impact of the scale-up of malaria control interventions on all-cause child mortality in sub-Saharan Africa. Am J Trop Med Hyg 97 (Suppl 3): 919. [Google Scholar]
  3. Coetzee M, Craig M, Sueur D, , 2000. Distribution of African malaria mosquitoes belonging to the Anopheles gambiae complex. Parasitol Today 16: 7477.[Crossref] [Google Scholar]
  4. Thomson MC, Connor SJ, Milligan PJM, Flasse SP, , 1996. The ecology of malaria: as seen from Earth-observation satellites. Ann Trop Med Parasitol 90: 243264.[Crossref] [Google Scholar]
  5. Paaijmans KP, Blanford S, Chan BH, , Thomas MB, 2012. Warmer temperatures reduce the vectorial capacity of malaria mosquitoes. Biol Lett 8: 465468.[Crossref] [Google Scholar]
  6. Howes RE, , 2015. Plasmodium vivax transmission in Africa. PLoS Negl Trop Dis 9: e0004222.[Crossref] [Google Scholar]
  7. Seyoum D, Kifle YG, Rondeau V, Yewhalaw D, Duchateau L, Rosas-Aguirre A, Speybroeck N, , 2016. Identification of different malaria patterns due to Plasmodium falciparum and Plasmodium vivax in Ethiopian children: a prospective cohort study. Malar J 15: 208.[Crossref] [Google Scholar]
  8. Gething PW, Van Boeckel TP, Smith D, Guerra CA, Patil AP, Snow RW, Hay SI, , 2011. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax . Parasit Vectors 4: 92.[Crossref] [Google Scholar]
  9. Thomson MC, Mason SJ, Phindela T, Connor SJ, , 2005. Use of rainfall and sea surface temperature monitoring for malaria early warning in Botswana. Am J Trop Med Hyg 73: 214221. [Google Scholar]
  10. Lyon B, , 2014. Seasonal drought in the greater horn of Africa and its recent increase during the March–May long rains. J Clim 27: 79537975.[Crossref] [Google Scholar]
  11. Ulrich JN, Naranjo DP, Alimi TO, Müller GC, Beier JC, , 2013. How much vector control is needed to achieve malaria elimination? Trends Parasitol 29: 104109.[Crossref] [Google Scholar]
  12. Thomson MC, Zadravecz F, Lyon B, Mantilla G, Willis D, Ceccato P, Dinku T, , 2012. President's Malaria Initiative-USAID Report: Development of Climate Analysis Section for the President's Malaria Initiative Impact Evaluation: Reports for Ethiopia and Tanzania. Palisades, NY: IRI, 62.
  13. M-MIEG, 2016. Evaluation of the Impact of Malaria Control Interventions on All-Cause Mortality in Children under Five Years of Age in Malawi PMI Washington http://www.pmi.gov/resource. publications Washington www.pmi.gov/library/pmi.
  14. R-MIEG, 2015. Rwanda Malaria Impact Evaluation Group: Evaluation of the Impact of Malaria Control Interventions on All-Cause Mortality in Children Under-five in Rwanda, 2015. PMI.
  15. Smithson P, Florey L, Salgado SR, Hershey CL, Masanja H, Bhattarai A, Mwita A, McElroy PD, ; Tanzania Malaria Impact Evaluation Research Group, 2015. Impact of malaria control on mortality and anemia among Tanzanian children less than five years of age, 1999–2010. PLoS One 10: e0141112. [Google Scholar]
  16. Aregawi M, , et al., 2014. Measure of trends in malaria cases and deaths at hospitals, and the effect of antimalarial interventions, 2001–2011, Ethiopia. PLoS One 9: e106359.[Crossref] [Google Scholar]
  17. Meyrowitsch DW, Pedersen EM, Alifrangis M, Scheike TH, Malecela MN, Magesa SM, Derua YA, Rwegoshora RT, Michael E, Simonsen PE, , 2011. Is the current decline in malaria burden in sub-Saharan Africa due to a decrease in vector population? Malar J 10: 188.[Crossref] [Google Scholar]
  18. Lindsay SW, Parson L, Thomas CJ, , 1998. Mapping the ranges and relative abundance of the two principal African malaria vectors, Anopheles gambiae sensu stricto and An. arabiensis, using climate data. Proc Biol Sci 265: 847854.[Crossref] [Google Scholar]
  19. Lyon B, DeWitt DG, , 2012. A recent and abrupt decline in the East African long rains. Geophys Res Lett 39: 2702.[Crossref] [Google Scholar]
  20. Bayoh MN, Mathias DK, Odiere MR, Mutuku FM, Kamau L, Gimnig JE, Vulule JM, Hawley WA, Hamel MJ, Walker ED, , 2010. Anopheles gambiae: historical population decline associated with regional distribution of insecticide-treated bed nets in western Nyanza Province, Kenya. Malar J 9: 62.[Crossref] [Google Scholar]
  21. Jaenisch T, Sullivan D, Dutta A, Deb S, Ramsan M, Othman MK, Gaczkowski R, Tielsch J, Sazawal S, , 2010. Malaria incidence and prevalence on Pemba Island before the onset of the successful control intervention on the Zanzibar Archipelago. Malar J 9: 32.[Crossref] [Google Scholar]
  22. Okiro EA, Alegana VA, Noor AM, Mutheu JJ, Juma E, Snow RW, , 2009. Malaria paediatric hospitalization between 1999 and 2008 across Kenya. BMC Med 7: 75.[Crossref] [Google Scholar]
  23. Graves PM, , et al., 2008. Effectiveness of malaria control during changing climate conditions in Eritrea, 1998–2003. Trop Med Int Health 13: 218228.[Crossref] [Google Scholar]
  24. Creasey A, Giha H, Hamad AA, El Hassan I, Theanderm TG, Arnot DE, , 2004. Eleven years of malaria surveillance in a Sudanese village highlights unexpected variation in individual disease susceptibility and outbreak severity. Parasitology 129: 263271.[Crossref] [Google Scholar]
  25. Mouchet J, Faye O, Julvez J, Manguin S, , 1996. Drought and malaria retreat in the Sahel, West Africa. Lancet 348: 17351736.[Crossref] [Google Scholar]
  26. Mrema S, Shamte A, Selemani M, Masanja H, , 2012. The influence of weather on mortality in rural Tanzania: a time-series analysis 1999–2010. Glob Health Action 5: 10. [Google Scholar]
  27. del Corral J, Blumenthal MB, Mantilla G, Ceccato P, Connor SJ, Thomson MC, , 2012. Climate information for public health: the role of the IRI climate data library in an integrated knowledge system. Geospat Health 6: S15S24.[Crossref] [Google Scholar]
  28. Dinku T, Cousin R, del Corral J, Ceccato P, Thomson M, Faniriantsoa R, Khomyakov I, Vadillo A, , 2016. The enacts approach: transforming climate services in Africa one country at a time. World Policy J. http://www.worldpolicy.org/policy-paper/2016/03/16/enacts-approach. [Google Scholar]
  29. Dinku T, Kanemba A, Platzer B, Thomson MC, , 2014. Leveraging the Climate for Improved Malaria Control in Tanzania. Earthzine: IEEE. https://earthzine.org/2014/02/15/leveraging-the-climate-for-improved-malaria-control-in-tanzania/.
  30. Alba S, Nathan R, Schulze A, Mshinda H, Lengeler C, , 2014. Child mortality patterns in rural Tanzania: an observational study on the impact of malaria control interventions. Int J Epi 43: 204215.[Crossref] [Google Scholar]
  31. Karema C, , et al., 2012. Trends in malaria cases, hospital admissions and deaths following scale-up of anti-malarial interventions, 2000–2010, Rwanda. Malar J 11: 236.[Crossref] [Google Scholar]
  32. Nygren D, Stoyanov C, Lewold C, Månsson F, Miller J, Kamanga A, Shiff CJ, , 2014. Remotely-sensed, nocturnal, dew point correlates with malaria transmission in southern province, Zambia: a time-series study. Malar J 13: 231.[Crossref] [Google Scholar]
  33. Lowe R, Chirombo J, Tompkins AM, , 2013. Relative importance of climatic, geographic and socio-economic determinants of malaria in Malawi. Malar J 12: 416.[Crossref] [Google Scholar]
  34. Bennett A, , et al., 2014. A methodological framework for the improved use of routine health system data to evaluate national malaria control programs: evidence from Zambia. Popul Health Metr 12: 30.[Crossref] [Google Scholar]
  35. Thomson MC, Connor SJ, D'Alessandro U, Rowlingson B, Diggle P, Cresswell M, Greenwood B, , 1999. Predicting malaria infection in Gambian children from satellite data and bed net use surveys: the importance of spatial correlation in the interpretation of results. Am J Trop Med Hyg 61: 28.[Crossref] [Google Scholar]
  36. Diggle P, Moyeed R, Rowlingson B, Thomson M, , 2002. Childhood malaria in the Gambia: a case study in model-based geostatistics. Appl Stat 51: 493506. [Google Scholar]
  37. Ruiz D, Brun C, Connor SJ, Omumbo JA, Lyon B, Thomson MC, , 2014. Multi-model ensemble (MME-2012) simulation experiments: exploring the role of long-term changes in climatic conditions in the increasing incidence of Plasmodium falciparum malaria in the highlands of western Kenya. Malar J 13: 206.[Crossref] [Google Scholar]
  38. Tompkins AM, Volker E, , 2013. A regional-scale, high resolution dynamical malaria model that accounts for population density, climate and surface hydrology. Malar J 12: 65.[Crossref] [Google Scholar]
  39. Alonso D, Bouma MJ, Pascual M, , 2011. Epidemic malaria and warmer temperatures in recent decades in an east African highland. Proc Biol Sci 278: 16611669.[Crossref] [Google Scholar]
  40. Platzer B, , et al., 2016. Maximizing impacts of malaria control and elimination in east Africa through climate services. Case Study 6.D WHO/WMO Climate Services for Health Improing Public Health Decision Making in a New Climate, J. Shumake-Guilemot, L. Fernandez-Montoya, Eds. (WHO/WMO, Geneva, 2016), pp. 172–173.
  41. Dinku T, Block P, Sharoff J, Hilemariam K, Osgood D, Del Corral J, Cousin R, Thomson MC, , 2014. Bridging critical gaps in climate service and applications in Africa. The International Research Institute for Climate & Society: shaping the landscape of climate services. Earth perspectives. Transdisciplinarity Enabled 1: 15. [Google Scholar]
  42. Dinku T, Hilemariam K, Grimes D, Kidane A, Connor S, , 2011. Improving availability, access and use of climate information. WMO bulletin 60: 8086. [Google Scholar]
  43. Blumenthal MB, Bell M, del Corral J, Remi Cousin R, Khomyakov I, , 2014. IRI Data Library: Enhancing Accessibility of Climate Knowledge: Section 1: IRI Approach & Examples of Integrated Research & Demonstration. The International Research Institute for Climate & Society: Shaping the Landscape of Climate Services. Earth Perspectives: Transdisciplinarity Enabled. 1: 19 doi: 10.1186/2194-434-1-19.
  44. Funk C, , et al., 2015. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci Data 2: 150066.[Crossref] [Google Scholar]
  45. Vancutsem C, Ceccato P, Dinku T, Connor SJ, , 2010. Evaluation of MODIS Land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ 114: 449465.[Crossref] [Google Scholar]
  46. Grover-Kopec E, Blumenthal B, Ceccato P, Dinku T, Omumbo J, Connor SJ, , 2006. Web-based climate information resources for malaria control in Africa. Malar J 5: 38.[Crossref] [Google Scholar]
  47. Lyon B, , 2004. The strength of El Niño and the spatial extent of tropical drought. Geophys Res Lett 31: 21. doi: 10.1029/2004GL020901.[Crossref] [Google Scholar]
  48. Grover-Kopec E, Kawano MW, Klaver RW, Blumenthal B, Ceccato P, Connor SJ, , 2005. An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa. Malar J 4: 6.[Crossref] [Google Scholar]
  49. Gillies HM, Warrell DA, , 1996. Bruce Chwatt's Essential Malariology. London, UK: Arnold.
  50. Craig MH, Snow RW, le Sueur D, , 1999. A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15: 105111.[Crossref] [Google Scholar]
  51. Mahongo SB, Francis J, , 2012. Analysis of rainfall variations and trends in coastal Tanzania. West Ind Ocean J Mar Sci 11: 121133. [Google Scholar]
  52. Aregawi MW, , et al., 2011. Reductions in malaria and anaemia case and death burden at hospitals following scale-up of malaria control in Zanzibar, 1999–2008. Malar J 10: 46.[Crossref] [Google Scholar]
  53. Viste E, Korecha D, Sorteberg A, , 2013. Recent drought and precipitation tendencies in Ethiopia. Theor Appl Climatol 112: 535551.[Crossref] [Google Scholar]
  54. Roca-Feltrer A, , et al., 2012. Lack of decline in childhood malaria, Malawi, 2001–2010. Emerg Infect Dis 18: 272278.[Crossref] [Google Scholar]
  55. Lyon B, Barnston AG, DeWitt DG, , 2013. Tropical pacific forcing of a 1998–1999 climate shift: observational analysis and climate model results for the boreal spring season. Clim Dyn 13: 18911899. [Google Scholar]
  56. Giannini AR, Saravanan R, Chang P, , 2003. Oceanic forcing of Sahel rainfall on interannual to interdecadal time scales. Science 302: 10271030.[Crossref] [Google Scholar]
  57. Labbo R, Fouta A, Jeanne I, Ousmane I, Duchemin JB, , 2004. Anopheles funestus in Sahel: new evidence from Niger. Lancet 363: 660.[Crossref] [Google Scholar]
  58. Giardina F, Kasasa S, Sie A, Utzinger J, Tanner M, Vounatsou P, , 2014. Effects of vector-control interventions on changes in risk of malaria parasitaemia in sub-Saharan Africa: a spatial and temporal analysis. Lancet 2: e601e615. [Google Scholar]
  59. Bennett A, , et al., 2016. The relative contribution of climate variability and vector control coverage to changes in malaria parasite prevalence in Zambia 2006–2012. Parasit Vectors 9: 431.[Crossref] [Google Scholar]
  60. Fuller WA, , 2006. Measurement Error Models. Hoboken, NJ: Wiley.
  61. Macfarlane SB, Thomson MC, AbouZahr CL, , 2007. Millennium: invest in country statistical systems. Nature 446: 974.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 25 Aug 2016
  • Accepted : 29 Dec 2016
  • Published online : 27 Sep 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error