1921
Volume 96, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

Piperaquine combined with dihydroartemisinin is one of the artemisinin derivative combination therapies, which can replace artesunate–mefloquine in treating uncomplicated falciparum malaria in Thailand. The aim of this study was to determine the in vitro sensitivity of Thai isolates against piperaquine and the influence of the gene on in vitro response. One hundred and thirty-seven standard laboratory and adapted Thai isolates of were assessed for in vitro piperaquine sensitivity. Polymorphisms of the gene were determined by polymerase chain reaction methods. The mean and standard deviation of the piperaquine IC in Thai isolates of were 16.7 ± 6.3 nM. The parasites exhibiting chloroquine IC of ≥ 100 nM were significantly less sensitive to piperaquine compared with the parasite with chloroquine IC of < 100 nM. No significant association between the copy number and piperaquine IC values was found. In contrast, the parasites containing the 86Y allele exhibited significantly reduced piperaquine sensitivity. Before nationwide implementation of dihydroartemisinin–piperaquine as the first-line treatment in Thailand, in vitro and in vivo evaluations of this combination should be performed especially in areas where parasites containing the 86Y allele are predominant such as the Thai–Malaysian border.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.16-0668
2017-03-08
2018-12-17
Loading full text...

Full text loading...

/deliver/fulltext/14761645/96/3/624.html?itemId=/content/journals/10.4269/ajtmh.16-0668&mimeType=html&fmt=ahah

References

  1. WHO, 2006. Guidelines for the Treatment of Malaria. Geneva, Switzerland: World Health Organization. [Google Scholar]
  2. WHO, 2010. Global Report on Antimalarial Drug Efficacy and Drug Resistance 2000–2010. Geneva, Switzerland: World Health Organization. [Google Scholar]
  3. White NJ, , 1996. The treatment of malaria. N Engl J Med 335: 800806.[Crossref] [Google Scholar]
  4. Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J, Lwin KM, Ariey F, Hanpithakpong W, Lee SJ, Ringwald P, Silamut K, Imwong M, Chotivanich K, Lim P, Herdman T, An SS, Yeung S, Singhasivanon P, Day NP, Lindegardh N, Socheat D, White NJ, , 2009. Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361: 455467.[Crossref] [Google Scholar]
  5. Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorp AM, Fukuda MM, Nosten F, Noedl H, Imwong M, Bethell D, Se Y, Lon C, Tyner SD, Saunders DL, Socheat D, Ariey F, Phyo AP, Starzengruber P, Fuehrer HP, Swoboda P, Stepniewska K, Flegg J, Arze C, Cerqueira GC, Silva JC, Ricklefs SM, Porcella SF, Stephens RM, Adams M, Kenefic LJ, Campino S, Auburn S, MacInnis B, Kwiatkowski DP, Su XZ, White NJ, Ringwald P, Plowe CV, , 2013. Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in southeast Asia. Proc Natl Acad Sci USA 110: 240245.[Crossref] [Google Scholar]
  6. Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White NJ, Nosten F, Krishna S, , 2004. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364: 438447.[Crossref] [Google Scholar]
  7. Na-Bangchang K, Ruengweerayut R, Mahamad P, Ruengweerayut K, Chaijaroenkul W, , 2010. Declining in efficacy of a three-day combination regimen of mefloquine-artesunate in a multi-drug resistance area along the Thai-Myanmar border. Malar J 9: 273.[Crossref] [Google Scholar]
  8. Slater HC, Griffin JT, Ghani AC, Okell LC, , 2016. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa. Malar J 15: 10.[Crossref] [Google Scholar]
  9. Davis TM, Hung TY, Sim IK, Karunajeewa HA, Ilett KF, , 2005. Piperaquine: a resurgent antimalarial drug. Drugs 65: 7587.[Crossref] [Google Scholar]
  10. Ashley EA, Krudsood S, Phaiphun L, Srivilairit S, McGready R, Leowattana W, Hutagalung R, Wilairatana P, Brockman A, Looareesuwan S, Nosten F, White NJ, , 2004. Randomized, controlled dose-optimization studies of dihydroartemisinin-piperaquine for the treatment of uncomplicated multidrug-resistant falciparum malaria in Thailand. J Infect Dis 190: 17731782.[Crossref] [Google Scholar]
  11. Smithuis F, Kyaw MK, Phe O, Aye KZ, Htet L, Barends M, Lindegardh N, Singtoroj T, Ashley E, Lwin S, Stepniewska K, White NJ, , 2006. Efficacy and effectiveness of dihydroartemisinin-piperaquine versus artesunate-mefloquine in falciparum malaria: an open-label randomised comparison. Lancet 367: 20752085.[Crossref] [Google Scholar]
  12. Zwang J, Ashley EA, Karema C, D'Alessandro U, Smithuis F, Dorsey G, Janssens B, Mayxay M, Newton P, Singhasivanon P, Stepniewska K, White NJ, Nosten F, , 2009. Safety and efficacy of dihydroartemisinin-piperaquine in falciparum malaria: a prospective multi-centre individual patient data analysis. PLoS One 4: e6358.[Crossref] [Google Scholar]
  13. Leang R, Barrette A, Bouth DM, Menard D, Abdur R, Duong S, Ringwald P, , 2013. Efficacy of dihydroartemisinin-piperaquine for treatment of uncomplicated Plasmodium falciparum and Plasmodium vivax in Cambodia, 2008 to 2010. Antimicrob Agents Chemother 57: 818826.[Crossref] [Google Scholar]
  14. Spring MD, Lin JT, Manning JE, Vanachayangkul P, Somethy S, Bun R, Se Y, Chann S, Ittiverakul M, Sia-ngam P, Kuntawunginn W, Arsanok M, Buathong N, Chaorattanakawee S, Gosi P, Ta-aksorn W, Chanarat N, Sundrakes S, Kong N, Heng TK, Nou S, Teja-isavadharm P, Pichyangkul S, Phann ST, Balasubramanian S, Juliano JJ, Meshnick SR, Chour CM, Prom S, Lanteri CA, Lon C, Saunders DL, , 2015. Dihydroartemisinin-piperaquine failure associated with a triple mutant including kelch13 C580Y in Cambodia: an observational cohort study. Lancet Infect Dis 15: 683691.[Crossref] [Google Scholar]
  15. Chaorattanakawee S, Saunders DL, Sea D, Chanarat N, Yingyuen K, Sundrakes S, Saingam P, Buathong N, Sriwichai S, Chann S, Se Y, Yom Y, Heng TK, Kong N, Kuntawunginn W, Tangthongchaiwiriya K, Jacob C, Takala-Harrison S, Plowe C, Lin JT, Chuor CM, Prom S, Tyner SD, Gosi P, Teja-Isavadharm P, Lon C, Lanteri CA, , 2015. Ex vivo drug susceptibility testing and molecular profiling of clinical Plasmodium falciparum isolates from Cambodia from 2008 to 2013 suggest emerging piperaquine resistance. Antimicrob Agents Chemother 59: 46314643.[Crossref] [Google Scholar]
  16. Leang R, Taylor WR, Bouth DM, Song L, Tarning J, Char MC, Kim S, Witkowski B, Duru V, Domergue A, Khim N, Ringwald P, Menard D, , 2015. Evidence of Plasmodium falciparum malaria multidrug resistance to artemisinin and piperaquine in western Cambodia: dihydroartemisinin-piperaquine open-label multicenter clinical assessment. Antimicrob Agents Chemother 59: 47194726.[Crossref] [Google Scholar]
  17. Amaratunga C, Lim P, Suon S, Sreng S, Mao S, Sopha C, Sam B, Dek D, Try V, Amato R, Blessborn D, Song L, Tullo GS, Fay MP, Anderson JM, Tarning J, Fairhurst RM, , 2016. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect Dis 16: 357365.[Crossref] [Google Scholar]
  18. Duru V, Khim N, Leang R, Kim S, Domergue A, Kloeung N, Ke S, Chy S, Eam R, Khean C, Loch K, Ken M, Lek D, Beghain J, Ariey F, Guerin PJ, Huy R, Mercereau-Puijalon O, Witkowski B, Menard D, , 2015. Plasmodium falciparum dihydroartemisinin-piperaquine failures in Cambodia are associated with mutant K13 parasites presenting high survival rates in novel piperaquine in vitro assays: retrospective and prospective investigations. BMC Med 13: 305.[Crossref] [Google Scholar]
  19. Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naudé B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE, , 2000. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6: 861871.[Crossref] [Google Scholar]
  20. Cooper RA, Ferdig MT, Su XZ, Ursos LM, Mu J, Nomura T, Fujioka H, Fidock DA, Roepe PD, Wellems TE, , 2002. Alternative mutations at position 76 of the vacuolar transmembrane protein PfCRT are associated with chloroquine resistance and unique stereospecific quinine and quinidine responses in Plasmodium falciparum . Mol Pharmacol 61: 3542.[Crossref] [Google Scholar]
  21. Basco LK, Ringwald P, , 2003. In vitro activities of piperaquine and other 4-aminoquinolines against clinical isolates of Plasmodium falciparum in Cameroon. Antimicrob Agents Chemother 47: 13911394.[Crossref] [Google Scholar]
  22. Wong RP, Lautu D, Tavul L, Hackett SL, Siba P, Karunajeewa HA, Ilett KF, Mueller I, Davis TM, , 2010. In vitro sensitivity of Plasmodium falciparum to conventional and novel antimalarial drugs in Papua New Guinea. Trop Med Int Health 15: 342349.[Crossref] [Google Scholar]
  23. Hao M, Jia D, Li Q, He Y, Yuan L, Xu S, Chen K, Wu J, Shen L, Sun L, Zhao H, Yang Z, Cui L, , 2013. In vitro sensitivities of Plasmodium falciparum isolates from the China-Myanmar border to piperaquine and association with polymorphisms in candidate genes. Antimicrob Agents Chemother 57: 17231729.[Crossref] [Google Scholar]
  24. Pascual A, Madamet M, Bertaux L, Amalvict R, Benoit N, Travers D, Cren J, Taudon N, Rogier C, Parzy D, Pradines B, French National Reference Centre for Imported Malaria Study Group; , 2013. In vitro piperaquine susceptibility is not associated with the Plasmodium falciparum chloroquine resistance transporter gene. Malar J 12: 431.[Crossref] [Google Scholar]
  25. Mwai L, Kiara SM, Abdirahman A, Pole L, Rippert A, Diriye A, Bull P, Marsh K, Borrmann S, Nzila A, , 2009. In vitro activities of piperaquine, lumefantrine, and dihydroartemisinin in Kenyan Plasmodium falciparum isolates and polymorphisms in pfcrt and pfmdr1 . Antimicrob Agents Chemother 53: 50695073.[Crossref] [Google Scholar]
  26. Briolant S, Henry M, Oeuvray C, Amalvict R, Baret E, Didillon E, Rogier C, Pradines B, , 2010. Absence of association between piperaquine in vitro responses and polymorphisms in the pfcrt, pfmdr1, pfmrp, and pfnhe genes in Plasmodium falciparum . Antimicrob Agents Chemother 54: 35373544.[Crossref] [Google Scholar]
  27. Muangnoicharoen S, Johnson DJ, Looareesuwan S, Krudsood S, Ward SA, , 2009. Role of known molecular markers of resistance in the antimalarial potency of piperaquine and dihydroartemisinin in vitro. Antimicrob Agents Chemother 53: 13621366.[Crossref] [Google Scholar]
  28. Foote SJ, Kyle DE, Martin RK, Oduola AM, Forsyth K, Kemp DJ, Cowman AF, , 1990. Several alleles of the multidrug-resistance gene are closely linked to chloroquine resistance in Plasmodium falciparum . Nature 345: 255258.[Crossref] [Google Scholar]
  29. Reed MB, Saliba KJ, Caruana SR, Kirk K, Cowman AF, , 2000. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum . Nature 403: 906909.[Crossref] [Google Scholar]
  30. Babiker HA, Pringle SJ, Abdel-Muhsin A, Mackinnon M, Hunt P, Walliker D, , 2001. Highl-level chloroquine resistance in Sudanese isolates of Plasmodium falciparum is associated with mutations in the chloroquine resistance transporter gene pfcrt and the multidrug resistance gene pfmdr1 . J Infect Dis 183: 15351538.[Crossref] [Google Scholar]
  31. Setthaudom C, Tan-ariya P, Sitthichot N, Khositnithikul R, Suwandittakul N, Leelayoova S, Mungthin M, , 2011. Role of Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes on in vitro chloroquine resistance in isolates of Plasmodium falciparum from Thailand. Am J Trop Med Hyg 85: 606611.[Crossref] [Google Scholar]
  32. Wilson CM, Volkman SK, Thaithong S, Martin RK, Kyle DJ, Milhous WK, Wirth DF, , 1993. Amplification of pfmdr1 associated with mefloquine and halofantrine resistance in Plasmodium falciparum from Thailand. Mol Biochem Parasitol 57: 151160.[Crossref] [Google Scholar]
  33. Cowman AF, Galatis D, Thompson JK, , 1994. Selection for mefloquine resistance in Plasmodium falciparum is linked to amplification of the pfmdr1 gene and cross-resistance to halofantrine and quinine. Proc Natl Acad Sci USA 91: 11431147.[Crossref] [Google Scholar]
  34. Price RN, Cassar C, Brockman A, Duraisingh M, van Vugt M, White NJ, Nosten F, Krisna S, , 1999. The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob Agents Chemother 43: 29432949. [Google Scholar]
  35. Pickard AL, Wongsrichanalai C, Purfield A, Kamwendo D, Emery K, Zalewski C, Kawamoto F, Miller RS, Meshnick SR, , 2003. Resistance to antimalarials in southeast Asia and genetic polymorphisms in pfmdr1 . Antimicrob Agents Chemother 47: 24182423.[Crossref] [Google Scholar]
  36. Price RN, Uhlemann AC, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White NJ, Nosten F, Krishna S, , 2004. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364: 438447.[Crossref] [Google Scholar]
  37. Duraisingh MT, Roper C, Walliker D, Warhurst DC, , 2000. Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum . Mol Microbiol 36: 955961.[Crossref] [Google Scholar]
  38. Duraisingh MT, Jones P, Sambou I, von Seidlein L, Pinder M, Warhurst DC, , 2000. The tyrosine-86 allele of the pfmdr1 gene of Plasmodium falciparum is associated with increased sensitivity to the anti-malarials mefloquine and artemisinin. Mol Biochem Parasitol 108: 1223.[Crossref] [Google Scholar]
  39. Poyomtip T, Suwandittakul N, Sitthichot N, Khositnithikul R, Tan-ariya P, Mungthin M, , 2012. Polymorphisms of the pfmdr1 but not the pfnhe-1 gene is associated with in vitro quinine sensitivity in Thai isolates of Plasmodium falciparum . Malar J 11: 7.[Crossref] [Google Scholar]
  40. Mungthin M, Khositnithikul R, Sitthichot N, Suwandittakul N, Wattanaveeradej V, Ward SA, Na-Bangchang K, , 2010. Association between the pfmdr1 gene and in vitro artemether and lumefantrine sensitivity in Thai isolates of Plasmodium falciparum . Am J Trop Med Hyg 83: 10051009.[Crossref] [Google Scholar]
  41. Mungthin M, Intanakom S, Suwandittakul N, Suida P, Amsakul S, Sitthichot N, Thammapalo S, Leelayoova S, , 2014. Distribution of pfmdr1 polymorphisms in Plasmodium falciparum isolated from Southern Thailand. Malar J 13: 117.[Crossref] [Google Scholar]
  42. Trager W, Jensen JB, , 1976. Human malaria parasites in continuous culture. Science 193: 673675.[Crossref] [Google Scholar]
  43. Desjardins RE, Canfield J, Haynes D, Chulay JD, , 1979. Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique. Antimicrob Agents Chemother 16: 710718.[Crossref] [Google Scholar]
  44. Wooden J, Gould EE, Paull AT, Sibley CH, , 1992. Plasmodium falciparum: a simple polymerase chain reaction method for differentiating strains. Exp Parasitol 75: 207212.[Crossref] [Google Scholar]
  45. Djimdé A, Doumbo OK, Cortese JF, Kayentao K, Doumbo S, Diourté Y, Dicko A, Su XZ, Nomura T, Fidock DA, Wellems TE, Plowe CV, Coulibaly D, , 2001. A molecular marker for chloroquine-resistant falciparum malaria. N Engl J Med 344: 257263.[Crossref] [Google Scholar]
  46. Pascual A, Madamet M, Briolant S, Gaillard T, Amalvict R, Benoit N, Travers D, Pradines B, French National Reference Centre for Imported Malaria Study Group; , 2015. Multinormal in vitro distribution of Plasmodium falciparum susceptibility to piperaquine and pyronaridine. Malar J 14: 49.[Crossref] [Google Scholar]
  47. Issaka M, Salissou A, Arzika I, Guillebaud J, Maazou A, Specht S, Zamanka H, Fandeur T, , 2013. Ex vivo responses of Plasmodium falciparum clinical isolates to conventional and new antimalarial drugs in Niger. Antimicrob Agents Chemother 57: 34153419.[Crossref] [Google Scholar]
  48. Barends M, Jaidee A, Khaohirun N, Singhasivanon P, Nosten F, , 2007. In vitro activity of ferroquine (SSR 97193) against Plasmodium falciparum isolates from the Thai-Burmese border. Malar J 6: 81.[Crossref] [Google Scholar]
  49. Marfurt J, Chalfein F, Prayoga P, Wabiser F, Kenangalem E, Piera KA, Machunter B, Tjitra E, Anstey NM, Price RN, , 2011. Ex vivo drug susceptibility of ferroquine against chloroquine-resistant isolates of Plasmodium falciparum and P. vivax . Antimicrob Agents Chemother 55: 44614464.[Crossref] [Google Scholar]
  50. Lim P, Dek D, Try V, Eastman RT, Chy S, Sreng S, Suon S, Mao S, Sopha C, Sam B, Ashley EA, Miotto O, Dondorp AM, White NJ, Su XZ, Char MC, Anderson JM, Amaratunga C, Menard D, Fairhurst RM, , 2013. Ex vivo susceptibility of Plasmodium falciparum to antimalarial drugs in western, northern, and eastern Cambodia, 2011–2012: association with molecular markers. Antimicrob Agents Chemother 57: 52775283.[Crossref] [Google Scholar]
  51. Pascual A, Parola P, Benoit-Vical F, Simon F, Malvy D, Picot S, Delaunay P, Basset D, Maubon D, Faugère B, Ménard G, Bourgeois N, Oeuvray C, Didillon E, Rogier C, Pradines B, , 2012. Ex vivo activity of the ACT new components pyronaridine and piperaquine in comparison with conventional ACT drugs against isolates of Plasmodium falciparum . Malar J 11: 45.[Crossref] [Google Scholar]
  52. Okombo J, Abdi AI, Kiara SM, Mwai L, Pole L, Sutherland CJ, Nzila A, Ochola-Oyier LI, , 2013. Repeat polymorphisms in the low-complexity regions of Plasmodium falciparum ABC transporters and associations with in vitro antimalarial responses. Antimicrob Agents Chemother 57: 61966204.[Crossref] [Google Scholar]
  53. Thomas SM, Ndir O, Dieng T, Mboup S, Wypij D, Maguire JH, Wirth DF, , 2002. In vitro chloroquine susceptibility and PCR analysis of pfcrt and pfmdr1 polymorphisms in Plasmodium falciparum isolates from Senegal. Am J Trop Med Hyg 66: 474480. [Google Scholar]
  54. Lim P, Chy S, Ariey F, Incardona S, Chim P, Sem R, Denis MB, Hewitt S, Hoyer S, Socheat D, Merecreau-Puijalon O, Fandeur T, , 2003. Pfcrt polymorphism and chloroquine resistance in Plasmodium falciparum strains isolated in Cambodia. Antimicrob Agents Chemother 47: 8794.[Crossref] [Google Scholar]
  55. Eastman RT, Dharia NV, Winzeler EA, Fidock DA, , 2011. Piperaquine resistance is associated with a copy number variation on chromosome 5 in drug-pressured Plasmodium falciparum parasites. Antimicrob Agents Chemother 55: 39083916.[Crossref] [Google Scholar]
  56. Veiga MI, Ferreira PE, Malmberg M, Jörnhagen L, Björkman A, Nosten F, Gil JP, , 2012. pfmdr1 amplification is related to increased Plasmodium falciparum in vitro sensitivity to the bisquinoline piperaquine. Antimicrob Agents Chemother 56: 36153619.[Crossref] [Google Scholar]
  57. Veiga MI, Dhingra SK, Henrich PP, Straimer J, Gnädig N, Uhlemann AC, Martin RE, Lehane AM, Fidock DA, , 2016. Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun 7: 11553.[Crossref] [Google Scholar]
  58. Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, Almagro-Garcia J, Neal AT, Sreng S, Suon S, Drury E, Jyothi D, Stalker J, Kwiatkowski DP, Fairhurst RM, , 2016. Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis 17: 164173.[Crossref] [Google Scholar]
  59. Witkowski B, Duru V, Khim N, Ross LS, Saintpierre B, Beghain J, Chy S, Kim S, Ke S, Kloeung N, Eam R, Khean C, Ken M, Loch K, Bouillon A, Domergue A, Ma L, Bouchier C, Leang R, Huy R, Nuel G, Barale JC, Legrand E, Ringwald P, Fidock DA, Mercereau-Puijalon O, Ariey F, Ménard D, , 2016. A surrogate marker of piperaquine-resistant Plasmodium falciparum malaria: a phenotype-genotype association study. Lancet Infect Dis 17: 174183.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.16-0668
Loading
/content/journals/10.4269/ajtmh.16-0668
Loading

Data & Media loading...

  • Received : 15 Aug 2016
  • Accepted : 19 Nov 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error