1921
Volume 96, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

Reducing the global health burden of malaria is complicated by weak reporting systems for infectious diseases and a paucity of vital statistics registration. This limits our ability to predict changes in malaria health burden intensity, target antimalarial resources where needed, and identify malaria impacts in retrospective data. We refined and deployed a temporally and spatially varying Malaria Ecology Index (MEI) incorporating climatological and ecological data to estimate malaria transmission strength and validate it against cross-sectional serology data from 39,875 children from seven sub-Saharan African countries. The MEI is strongly associated with malaria burden; a 1 standard deviation higher MEI is associated with a 50–117% increase in malaria risk and a 3–5 g/dL lower level of Hg. Results show that the relationship between malaria ecology and disease burden is attenuated with sufficient coverage of insecticide treated nets (ITNs) or indoor residual spraying (IRS). Having both ITNs and IRS reduce the added risk from adverse malaria ecology conditions by half. Readily available climate and ecology data can be used to estimate the spatial and temporal variation in malaria disease burden, providing a feasible alternative to direct surveillance. This will help target resources for malaria programs in the absence of national coverage of active case detection systems, and facilitate malaria research using retrospective health data.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.16-0602
2017-03-08
2018-12-19
Loading full text...

Full text loading...

/deliver/fulltext/14761645/96/3/616.html?itemId=/content/journals/10.4269/ajtmh.16-0602&mimeType=html&fmt=ahah

References

  1. Ravishankar N, Gubbins P, Cooley RJ, Leach-Kemon K, Michaud CM, Jamison DT, Murray CJ, , 2009. Financing of global health: tracking development assistance for health from 1990 to 2007. Lancet 373: 21132124.[Crossref] [Google Scholar]
  2. WHO, 2015. World Malaria Report 2015. Geneva, Switzerland: World Health Organization. [Google Scholar]
  3. Sachs JD, Malaney P, , 2002. The economic and social burden of malaria. Nature 415: 680685.[Crossref] [Google Scholar]
  4. Bleakley H, , 2010. Malaria eradication in the Americas: a retrospective analysis of childhood exposure. Am Econ J Appl Econ 2: 145.[Crossref] [Google Scholar]
  5. Barreca AI, , 2010. The long-term economic impact of in utero and postnatal exposure to malaria. J Hum Resour 45: 865892. [Google Scholar]
  6. Lucas AM, , 2010. Malaria eradication and educational attainment: evidence from Paraguay and Sri Lanka. Am Econ J Appl Econ 2: 4671.[Crossref] [Google Scholar]
  7. Murray CJL, Lopez AD, , 2013. Measuring the global burden of disease. N Engl J Med 369: 448457.[Crossref] [Google Scholar]
  8. Alonso PL, Tanner M, , 2013. Public health challenges and prospects for malaria control and elimination. Nat Med 19: 150155.[Crossref] [Google Scholar]
  9. WHO, 2012. World Malaria Report 2012. Geneva, Switzerland: World Health Organization. [Google Scholar]
  10. Murray CJL, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD, , 2012. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379: 413431.[Crossref] [Google Scholar]
  11. Hay SI, Okiro EA, Gething PW, Patil AP, Tatem AJ, Guerra CA, Snow RW, , 2010. Estimating the global clinical burden of Plasmodium falciparum malaria in 2007. PLoS Med 7: 114. [Google Scholar]
  12. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI, , 2005. The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434: 214217.[Crossref] [Google Scholar]
  13. Giardina F, Kasasa S, Sié A, Utzinger J, Tanner M, Vounatsou P, , 2014. Effects of vector-control interventions on changes in risk of malaria parasitaemia in sub-Saharan Africa: a spatial and temporal analysis. Lancet Glob Health 2: e601e615.[Crossref] [Google Scholar]
  14. van Eijk AM, Hill J, Noor AM, Snow RW, ter Kuile FO, , 2015. Prevalence of malaria infection in pregnant women compared with children for tracking malaria transmission in sub-Saharan Africa: a systematic review and meta-analysis. Lancet Glob Health 3: e617e628.[Crossref] [Google Scholar]
  15. Walker PG, ter Kuile FO, Garske T, Menendez C, Ghani AC, , 2014. Estimated risk of placental infection and low birthweight attributable to Plasmodium falciparum malaria in Africa in 2010: a modelling study. Lancet Glob Health 2: 460467.[Crossref] [Google Scholar]
  16. Carstensen K, Gundlach E, , 2006. The primacy of institutions reconsidered: direct income effects of malaria prevalence. World Bank Econ Rev 20: 309339.[Crossref] [Google Scholar]
  17. McCord GC, , 2016. Malaria ecology and climate change. European Physics Journal 225: 459470. [Google Scholar]
  18. Caminade C, Kovats S, Rocklov J, Tompkins AM, Morse AP, Colon-Gonzales FJ, Stenlund H, Martens P, Lloyd SJ, , 2014. Impact of climate change on global malaria transmission. Proc Natl Acad Sci USA 111: 32863291.[Crossref] [Google Scholar]
  19. Tanser FC, Sharp B, le Sueur D, , 2003. Potential effect of climate change on malaria transmission in Africa. Lancet 362: 17921798.[Crossref] [Google Scholar]
  20. Kiszewski A, Mellinger A, Spielman A, Malaney P, Sachs SE, Sachs J, , 2004. A global index representing the stability of malaria transmission. Am J Trop Med Hyg 70: 486498. [Google Scholar]
  21. Ikemoto T, , 2008. Tropical malaria does not mean hot environments. J Med Entomol 45: 963969.[Crossref] [Google Scholar]
  22. Matsuura K, Willmott CJ, , 2012. Terrestrial Air Temperature: 1900–2012 Gridded Monthly Time Series. Delaware, Newark: Center for Climatic Research, Department of Geography, University of Delaware. [Google Scholar]
  23. Perez-Heydrich C, Warren JL, Burgert CR, Emch ME, , 2013. Guidelines on the Use of DHS Spatial Data. Calverton, MD: DHS Spatial Analysis Reports 8. [Google Scholar]
  24. Lysenko AJ, Semashko IN, Lebedew AW, , 1968. Geography of malaria. A medico-geographic profile of an ancient disease. , ed. Itogi Nauki: Medicinskaja Geografija. Moscow, Russia: Academy of Sciences, 25146. [Google Scholar]
  25. Marsh K, Snow RW, , 1999. Malaria transmission and morbidity. Parassitologia 41: 241246. [Google Scholar]
  26. Eisele TP, Miller JM, Moonga HB, Hamainza B, Hutchinson P, Keating J, , 2011. Malaria infection and anemia prevalence in Zambia's Luangwa District: an area of near-universal insecticide-treated mosquito net coverage. Am J Trop Med Hyg 84: 152157.[Crossref] [Google Scholar]
  27. Ai C, Norton E, , 2003. Interaction terms in logit and probit models. Econ Lett 80: 123129.[Crossref] [Google Scholar]
  28. Watts N, Adger WN, Agnolucci P, Blackstock J, Byass P, Cai W, Chaytor S, Colbourn T, Collins M, Cooper A, Cox PM, Depledge J, Drummond P, Ekins P, Galaz V, Grace D, Graham H, Grubb M, Haines A, Hamilton I, Hunter A, Jiang X, Li M, Kelman I, Liang L, Lott M, Lowe R, Luo Y, Mace G, Maslin M, Nilsson M, Oreszczyn T, Pye S, Quinn T, Svensdotter M, Venevsky S, Warner K, Xu B, Yang J, Yin Y, Yu C, Zhang Q, Gong P, Montgomery H, Costello A, , 2015. Health and climate change: policy responses to protect public health. Lancet 386: 18611914.[Crossref] [Google Scholar]
  29. Rodo X, Pascual M, Doblas-Reyes FJ, Gershunov A, Ston DA, Giorgi F, Hudson PJ, Kinter J, Rodríguez-Arias MA, Stenseth NC, Alonso D, García-Serrano J, Dobson AP, , 2013. Climate change and infectious diseases: can we meet the needs for better prediction? Clim Change 118: 625640.[Crossref] [Google Scholar]
  30. Shuman EK, , 2010. Global climate change and infectious diseases. New Engl J Med 362: 10611063.[Crossref] [Google Scholar]
  31. Campbell-Lendrum D, Manga L, Bagayoko M, Sommerfeld J, , 2015. Climate change and vector-borne diseases: what are the implications for public health research and policy? Philos Trans R Soc Lond B Biol Sci 370: 20130552.[Crossref] [Google Scholar]
  32. Gonçalves BP, Huang CY, Morrison R, Holte S, Kabyemela E, Prevots R, Fried M, Duffy PE, , 2014. Parasite burden and severity of malaria in Tanzanian children. N Engl J Med 370: 17991808.[Crossref] [Google Scholar]
  33. Atieli HE, Zhou G, Afrane Y, Lee MC, Mwanzo I, Githeko AK, Yan G, , 2011. Insecticide-treated net (ITN) ownership, usage, and malaria transmission in the highlands of western Kenya. Parasit Vectors 4: 113.[Crossref] [Google Scholar]
  34. N'Guessan R, Corbel V, Akogbeto M, Rowland M, , 2011. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Infect Dis 84: 152157. [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.16-0602
Loading
/content/journals/10.4269/ajtmh.16-0602
Loading

Data & Media loading...

  • Received : 22 Jul 2016
  • Accepted : 24 Nov 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error