Volume 96, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The RPA lateral flow has the potential for deployment to endemic areas after further characterization.


Article metrics loading...

Loading full text...

Full text loading...



  1. Fürst T, Keiser J, Utzinger J, , 2012. Global burden of human food-borne trematodiasis: a systematic review and meta-analysis. Lancet Infect Dis 12: 210221.[Crossref]
  2. Fentie T, Erqou S, Gedefaw M, Desta A, , 2013. Epidemiology of human fascioliasis and intestinal parasitosis among schoolchildren in Lake Tana Basin, northwest Ethiopia. Trans R Soc Trop Med Hyg 107: 480486.[Crossref]
  3. Nguyen TGT, , 2012. Zoonotic Fasciolosis in Vietnam: Molecular Identification and Geographical Distribution. Available at: http://www.vpi.ugent.be/page13/files/giang-thanh-nguyen-thi-2.pdf. Accessed March 25, 2015.
  4. Moghaddam AS, Massoud J, Mahmoodi M, Mahvi AH, Periago MV, Artigas P, Fuentes MV, Bargues MD, Mas-Coma S, , 2004. Human and animal fascioliasis in Mazandaran province, northern Iran. Parasitol Res 94: 6169.[Crossref]
  5. Steinmann P, Usubalieva J, Imanalieva C, Minbaeva G, Stefiuk K, Jeandron A, Utzinger J, , 2010. Rapid appraisal of human intestinal helminth infections among schoolchildren in Osh oblast, Kyrgyzstan. Acta Trop 116: 178184.[Crossref]
  6. Mas-Coma A, Bargues MD, Valero MA, , 2014. Diagnosis of human fascioliasis by stool and blood techniques: update for the present global scenario. Parasitology 141: 19181946.[Crossref]
  7. Zumaquero-Ríos JL, Sarracent-Pérez J, Rojas-García R, Rojas-Rivero L, Martínez-Tovilla Y, Valero MA, Mas-Coma S, , 2013. Fascioliasis and intestinal parasitoses affecting schoolchildren in Atlixco, Puebla State, Mexico: epidemiology and treatment with nitazoxanide. PLoS Negl Trop Dis 7: e2553.[Crossref]
  8. Terashima A, Marcos L, Maco V, Canales M, Samalvides F, Tello R, , 2009. Spontaneous sedimentation in tube technique (SSTT) for diagnosis of intestinal parasites. Rev Gastroenterol Peru 29: 305310.
  9. Espinoza JR, Maco V, Marcos L, Saez S, Neyra V, Terashima A, Samalvides F, Gotuzzo E, Chavarry E, Huaman MC, Bargues MD, Valero MA, Mas-Coma S, , 2007. Evaluation of Fas2-ELISA for the serological detection of Fasciola hepatica infection in humans. Am J Trop Med Hyg 76: 977982.
  10. Allam G, Bauomy IR, Hemyeda ZM, Sakran TF, , 2012. Evaluation of a 14.5 kDa-Fasciola gigantica fatty acid binding protein as a diagnostic antigen for human fascioliasis. Parasitol Res 110: 18631871.[Crossref]
  11. Martínez-Sernández V, Orbegozo-Medina RA, González-Warleta M, Mezo M, Ubeira FM, , 2016. Rapid enhanced MM3-COPRO ELISA for detection of Fasciola coproantigens. PLoS Negl Trop Dis 10: e0004872.[Crossref]
  12. Valero MA, Periago MV, Perez-Crespo I, Angles R, Villegas F, Aguirre C, Strauss W, Espinoza JR, Herrera P, Terashima A, Tamayo H, Engels D, Gabrielli AF, Mas-Coma S, , 2012. Field evaluation of a coproantigen detection test for fascioliasis diagnosis and surveillance in human hyperendemic areas of Andean countries. PLoS Negl Trop Dis 6: e1812.[Crossref]
  13. James A, Macdonald J, , 2015. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low resource diagnostics. Expert Rev Mol Diagn 15: 14751489.[Crossref]
  14. Yehia N, Arafa AS, Abd El Wahed A, El-Sanousi AA, Weidmann M, Shalaby MA, , 2015. Development of a reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection. J Varil Methods 223: 4549.[Crossref]
  15. Boyle DS, McNerney R, Teng Low H, Leader BT, Perez-Osorio AC, Meyer JC, O'Sullivan DM, Brooks DG, Piepenburg O, Forrest MS, , 2014. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One 9: e103091.[Crossref]
  16. Crannell ZA, Catellanos-Gonzalez A, Nair G, Mejia R, White AC, Richards-Kortum R, , 2016. A multiplexed recombinase polymerase amplification assays to detect intestinal protozoa. Anal Chem 88: 16101616.[Crossref]
  17. WHO, 2008. Field tools. Action against Worms Newsletter 11, 3. Available at: http://www.who.int/neglected_diseases/preventive_chemotherapy/pctnewsletter11.pdf. Accessed June 28, 2016.
  18. Maco-Flores V, Marcos-Raymundo L, Terashima-Iwashita A, Samalvides-Cuba F, Miranda-Sanchez E, Espinoza-Babilon J, Gotuzzo-Herencia E, , 2002. Fas-2 ELISA and the rapid sedimentation technique modified by Lumbreras for Fasciola hepatica infection diagnosis [in Spanish]. Rev Med Hered 13: 4957. Available at: http://www.scielo.org.pe/scielo.php?pid=S1018-130X2002000200004&script=sci_arttext. Accessed June 28, 2016.[Crossref]
  19. Nikolay B, Brooker SJ, Pullan RL, , 2014. Sensitivity of diagnostic tests for human soil-transmitted helminth infections: a meta-analysis in the absence of a true gold standard. Int J Parasitol 44: 765774.[Crossref]
  20. Kim HY, Choi IW, Kim YR, Quan JH, Ismail HA, Cha GH, Hong SJ, Lee YH, , 2014. Fasciola hepatica in snails collected from water-dropwort fields using PCR. Korean J Parasitol 52: 645652.[Crossref]
  21. Ai L, Chen MX, Alasaad S, Elsheikha HM, Li J, Li HL, Lin RQ, Zou FC, Zhu XQ, Chen JX, , 2011. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches. Parasit Vectors 4: 101.[Crossref]
  22. Martinez-Valladares M, Rojo-Vazquez FA, , 2016. Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions. Parasit Vectors 9: 73.[Crossref]
  23. Le TH, Nguyen KT, Nguyen NTB, Doan HTT, Le XTK, Hoang CTM, De NV, , 2012. Development and evaluation of a single-step duplex PCR for simultaneous detection of Fasciola hepatica and Fasciola gigantica (family Fasciolidae, class Trematoda, phylum Platyhelminthes). J Clin Microbiol 50: 27202726.[Crossref]
  24. Albonico M, Rinaldi L, Sciascia S, Morgoglione ME, Piemonte M, Maurelli MP, Musella V, Utzinger J, Ali SM, Ame SM, Cringoli G, , 2013. Comparison of three copromicroscopic methods to assess albendazole efficacy against soil-transmitted helminth infections in school-aged children on Pemba Island. Trans R Soc Trop Med Hyg 107: 493501.[Crossref]
  25. Brockwell YM, Spithill TW, Anderson GR, Grillo V, Sangster NC, , 2013. Comparative kinetics of serological and coproantigen ELISA and faecal egg count in cattle experimentally infected with Fasciola hepatica and following treatment with triclabendazole. Vet Parasitol 196: 417426.[Crossref]
  26. Robles-Pereza D, Martínez-Perez JM, Rojo-Vazquez FA, Martinez-Valladares M, , 2013. The diagnosis of fasciolosis in feces of sheep by means of a PCR and its application in the detection of anthelmintic resistance in sheep flocks naturally infected. Vet Parasitol 197: 277282.[Crossref]
  27. Sabaté del Río J, Yehia NA, Acero-Sánchez JL, Henry OYF, O'Sullivan CK, , 2014. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron 54: 674678.[Crossref]
  28. Mayboroda O, Gonzalez Benito A, Sabaté del Rio J, Svobodova M, Julich S, Tomaso H, O'Sullivan CK, Katakis I, , 2016. Isothermal solid-phase amplification system for detection of Yersinia pestis . Anal Bioanal Chem 408: 671676.[Crossref]

Data & Media loading...

  • Received : 21 Jul 2016
  • Accepted : 25 Sep 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error