Volume 96, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is the most widely distributed trematode infection in the world. Control efforts may be hindered by the lack of diagnostic capacity especially in remote endemic areas. Polymerase chain reaction (PCR)–based methods offer high sensitivity and specificity but require expensive technology. However, the recombinase polymerase amplification (RPA) is an efficient isothermal method that eliminates the need for a thermal cycler and has a high deployment potential to resource-limited settings. We report on the characterization of RPA and PCR tests to detect infection in clinical stool samples with low egg burdens. The sensitivity of the RPA and PCR were 87% and 66%, respectively. Both tests were 100% specific showing no cross-reactivity with trematode, cestode, or nematode parasites. In addition, RPA and PCR were able to detect 47% and 26% of infections not detected by microscopy, respectively. The RPA adapted to a lateral flow platform was more sensitive than gel-based detection of the reaction products. In conclusion, the RPA is a highly sensitive and specific test to diagnose chronic infection using stool samples. The RPA lateral flow has the potential for deployment to endemic areas after further characterization.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Fürst T, Keiser J, Utzinger J, , 2012. Global burden of human food-borne trematodiasis: a systematic review and meta-analysis. Lancet Infect Dis 12: 210221.[Crossref] [Google Scholar]
  2. Fentie T, Erqou S, Gedefaw M, Desta A, , 2013. Epidemiology of human fascioliasis and intestinal parasitosis among schoolchildren in Lake Tana Basin, northwest Ethiopia. Trans R Soc Trop Med Hyg 107: 480486.[Crossref] [Google Scholar]
  3. Nguyen TGT, , 2012. Zoonotic Fasciolosis in Vietnam: Molecular Identification and Geographical Distribution. Available at: http://www.vpi.ugent.be/page13/files/giang-thanh-nguyen-thi-2.pdf. Accessed March 25, 2015. [Google Scholar]
  4. Moghaddam AS, Massoud J, Mahmoodi M, Mahvi AH, Periago MV, Artigas P, Fuentes MV, Bargues MD, Mas-Coma S, , 2004. Human and animal fascioliasis in Mazandaran province, northern Iran. Parasitol Res 94: 6169.[Crossref] [Google Scholar]
  5. Steinmann P, Usubalieva J, Imanalieva C, Minbaeva G, Stefiuk K, Jeandron A, Utzinger J, , 2010. Rapid appraisal of human intestinal helminth infections among schoolchildren in Osh oblast, Kyrgyzstan. Acta Trop 116: 178184.[Crossref] [Google Scholar]
  6. Mas-Coma A, Bargues MD, Valero MA, , 2014. Diagnosis of human fascioliasis by stool and blood techniques: update for the present global scenario. Parasitology 141: 19181946.[Crossref] [Google Scholar]
  7. Zumaquero-Ríos JL, Sarracent-Pérez J, Rojas-García R, Rojas-Rivero L, Martínez-Tovilla Y, Valero MA, Mas-Coma S, , 2013. Fascioliasis and intestinal parasitoses affecting schoolchildren in Atlixco, Puebla State, Mexico: epidemiology and treatment with nitazoxanide. PLoS Negl Trop Dis 7: e2553.[Crossref] [Google Scholar]
  8. Terashima A, Marcos L, Maco V, Canales M, Samalvides F, Tello R, , 2009. Spontaneous sedimentation in tube technique (SSTT) for diagnosis of intestinal parasites. Rev Gastroenterol Peru 29: 305310. [Google Scholar]
  9. Espinoza JR, Maco V, Marcos L, Saez S, Neyra V, Terashima A, Samalvides F, Gotuzzo E, Chavarry E, Huaman MC, Bargues MD, Valero MA, Mas-Coma S, , 2007. Evaluation of Fas2-ELISA for the serological detection of Fasciola hepatica infection in humans. Am J Trop Med Hyg 76: 977982. [Google Scholar]
  10. Allam G, Bauomy IR, Hemyeda ZM, Sakran TF, , 2012. Evaluation of a 14.5 kDa-Fasciola gigantica fatty acid binding protein as a diagnostic antigen for human fascioliasis. Parasitol Res 110: 18631871.[Crossref] [Google Scholar]
  11. Martínez-Sernández V, Orbegozo-Medina RA, González-Warleta M, Mezo M, Ubeira FM, , 2016. Rapid enhanced MM3-COPRO ELISA for detection of Fasciola coproantigens. PLoS Negl Trop Dis 10: e0004872.[Crossref] [Google Scholar]
  12. Valero MA, Periago MV, Perez-Crespo I, Angles R, Villegas F, Aguirre C, Strauss W, Espinoza JR, Herrera P, Terashima A, Tamayo H, Engels D, Gabrielli AF, Mas-Coma S, , 2012. Field evaluation of a coproantigen detection test for fascioliasis diagnosis and surveillance in human hyperendemic areas of Andean countries. PLoS Negl Trop Dis 6: e1812.[Crossref] [Google Scholar]
  13. James A, Macdonald J, , 2015. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low resource diagnostics. Expert Rev Mol Diagn 15: 14751489.[Crossref] [Google Scholar]
  14. Yehia N, Arafa AS, Abd El Wahed A, El-Sanousi AA, Weidmann M, Shalaby MA, , 2015. Development of a reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection. J Varil Methods 223: 4549.[Crossref] [Google Scholar]
  15. Boyle DS, McNerney R, Teng Low H, Leader BT, Perez-Osorio AC, Meyer JC, O'Sullivan DM, Brooks DG, Piepenburg O, Forrest MS, , 2014. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One 9: e103091.[Crossref] [Google Scholar]
  16. Crannell ZA, Catellanos-Gonzalez A, Nair G, Mejia R, White AC, Richards-Kortum R, , 2016. A multiplexed recombinase polymerase amplification assays to detect intestinal protozoa. Anal Chem 88: 16101616.[Crossref] [Google Scholar]
  17. WHO, 2008. Field tools. Action against Worms Newsletter 11, 3. Available at: http://www.who.int/neglected_diseases/preventive_chemotherapy/pctnewsletter11.pdf. Accessed June 28, 2016. [Google Scholar]
  18. Maco-Flores V, Marcos-Raymundo L, Terashima-Iwashita A, Samalvides-Cuba F, Miranda-Sanchez E, Espinoza-Babilon J, Gotuzzo-Herencia E, , 2002. Fas-2 ELISA and the rapid sedimentation technique modified by Lumbreras for Fasciola hepatica infection diagnosis [in Spanish]. Rev Med Hered 13: 4957. Available at: http://www.scielo.org.pe/scielo.php?pid=S1018-130X2002000200004&script=sci_arttext. Accessed June 28, 2016.[Crossref] [Google Scholar]
  19. Nikolay B, Brooker SJ, Pullan RL, , 2014. Sensitivity of diagnostic tests for human soil-transmitted helminth infections: a meta-analysis in the absence of a true gold standard. Int J Parasitol 44: 765774.[Crossref] [Google Scholar]
  20. Kim HY, Choi IW, Kim YR, Quan JH, Ismail HA, Cha GH, Hong SJ, Lee YH, , 2014. Fasciola hepatica in snails collected from water-dropwort fields using PCR. Korean J Parasitol 52: 645652.[Crossref] [Google Scholar]
  21. Ai L, Chen MX, Alasaad S, Elsheikha HM, Li J, Li HL, Lin RQ, Zou FC, Zhu XQ, Chen JX, , 2011. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches. Parasit Vectors 4: 101.[Crossref] [Google Scholar]
  22. Martinez-Valladares M, Rojo-Vazquez FA, , 2016. Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions. Parasit Vectors 9: 73.[Crossref] [Google Scholar]
  23. Le TH, Nguyen KT, Nguyen NTB, Doan HTT, Le XTK, Hoang CTM, De NV, , 2012. Development and evaluation of a single-step duplex PCR for simultaneous detection of Fasciola hepatica and Fasciola gigantica (family Fasciolidae, class Trematoda, phylum Platyhelminthes). J Clin Microbiol 50: 27202726.[Crossref] [Google Scholar]
  24. Albonico M, Rinaldi L, Sciascia S, Morgoglione ME, Piemonte M, Maurelli MP, Musella V, Utzinger J, Ali SM, Ame SM, Cringoli G, , 2013. Comparison of three copromicroscopic methods to assess albendazole efficacy against soil-transmitted helminth infections in school-aged children on Pemba Island. Trans R Soc Trop Med Hyg 107: 493501.[Crossref] [Google Scholar]
  25. Brockwell YM, Spithill TW, Anderson GR, Grillo V, Sangster NC, , 2013. Comparative kinetics of serological and coproantigen ELISA and faecal egg count in cattle experimentally infected with Fasciola hepatica and following treatment with triclabendazole. Vet Parasitol 196: 417426.[Crossref] [Google Scholar]
  26. Robles-Pereza D, Martínez-Perez JM, Rojo-Vazquez FA, Martinez-Valladares M, , 2013. The diagnosis of fasciolosis in feces of sheep by means of a PCR and its application in the detection of anthelmintic resistance in sheep flocks naturally infected. Vet Parasitol 197: 277282.[Crossref] [Google Scholar]
  27. Sabaté del Río J, Yehia NA, Acero-Sánchez JL, Henry OYF, O'Sullivan CK, , 2014. Electrochemical detection of Francisella tularensis genomic DNA using solid-phase recombinase polymerase amplification. Biosens Bioelectron 54: 674678.[Crossref] [Google Scholar]
  28. Mayboroda O, Gonzalez Benito A, Sabaté del Rio J, Svobodova M, Julich S, Tomaso H, O'Sullivan CK, Katakis I, , 2016. Isothermal solid-phase amplification system for detection of Yersinia pestis . Anal Bioanal Chem 408: 671676.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 21 Jul 2016
  • Accepted : 25 Sep 2016
  • Published online : 08 Feb 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error