Volume 97, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Multiplex bead assays (MBAs) may provide a powerful integrated tool for monitoring, evaluation, and post-elimination surveillance of onchocerciasis and co-endemic diseases; however, the specificity and sensitivity of antigens have not been characterized within this context. An MBA was developed to evaluate three antigens (OV-16, OV-17, and OV-33) for onchocerciasis. Receiver operating characteristics (ROC) analyses were used to characterize antigen performance using a panel of 610 specimens: 109 -positive specimens, 426 non-onchocerciasis controls with filarial and other confirmed parasitic infection, and 75 sera from patients with no other parasitic infection. The IgG and IgG4 assays for OV-16 demonstrated sensitivities of 95.4% and 96.3%, and specificities of 99.4% and 99.8%, respectively. The OV-17 IgG and IgG4 assays had sensitivities of 86.2% and 76.1% and specificities of 79.2% and 82.8%. For OV-33, the IgG and IgG4 assays had sensitivities of 90.8% and 96.3%, and specificities of 96.8% and 98.6%. The OV-16 IgG4-based MBA had the best assay characteristics, followed by OV-33 IgG4. The OV-16 IgG4 assay would be useful for monitoring and evaluation using the MBA platform. Further evaluations are needed to review the potential use of OV-33 as a confirmatory test in the context of program evaluations.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO, 2016. Progress Report on the Elimination of Human Onchocerciasis, 2015–2016. Wkly Epidemiol Rec 91: 505514. [Google Scholar]
  2. Crump A, Morel CM, Omura S, , 2012. The onchocerciasis chronicle: from the beginning to the end? Trends Parasitol 28: 280288. [Google Scholar]
  3. APOC, 2013. Programme for the Elimination of Neglected Diseases in Africa (PENDA)*: Strategic Plan of Action and Indicative Budget 2016–2025. Available at: http://www.who.int/apoc/en_apoc_strategic_plan_2013_ok.pdf?ua=1. Accessed July 21, 2015. [Google Scholar]
  4. Basáñez MG, Pion SDS, Boakes E, Filipe JAN, Churcher TS, , 2008. Effect of single-dose ivermectin on Onchocerca volvulus: a systematic review and meta-analysis. Lancet Infect Dis 8: 310322. [Google Scholar]
  5. Duke BO, , 1993. The population dynamics of Onchocerca volvulus in the human host. Trop Med Parasitol 44: 6168. [Google Scholar]
  6. Traoré MO, Sarr MD, Badji A, Bissan Y, Diawara L, , 2012. Proof-of-principle of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: final results of a study in Mali and Senegal. PloS Negl Trop Dis 6: e1825. [Google Scholar]
  7. World Health Organization, 2016. Guidelines for Stopping Mass Drug Administration and Verification of Elimination of Human Onchocerciasis. WHO/HTM/NTD/PCT/2016.1. Available at: www.who.int/onchocerciasis/resources/9789241510011/en/. Accessed March 13, 2016. [Google Scholar]
  8. Oguttu D, Byamukama E, Katholi CR, Habomugish P, Nahabwe C, Ngabirano M, , 2014. Serosurveillance to monitor onchocerciasis elimination: the Ugandan experience. Am J Trop Med Hyg 90: 339345. [Google Scholar]
  9. Lindblade KA, Arana B, Zea-Flores G, Rizzo N, Porter CH, , 2007. Elimination of Onchocerca volvulus transmission in the Santa Rosa focus of Guatemala. Am J Trop Med Hyg 77: 334341. [Google Scholar]
  10. African Programme for Onchocerciasis Control, 2010. Conceptual and Operational Framework of Onchocerciasis Elimination with Ivermectin Treatment. Available at: http://www.who.int/apoc/oncho_elimination_report_english.pdf. Accessed March 15, 2015. [Google Scholar]
  11. Diawara L, Traoré MO, Badji A, Bissan Y, Doumbia K, , 2009. Feasibility of onchocerciasis elimination with ivermectin treatment in endemic foci in Africa: first evidence from studies in Mali and Senegal. PLoS Negl Trop Dis 3: e497. [Google Scholar]
  12. Rodríguez-Pérez MA, Unnasch TR, Domínguez-Vázquez A, Morales-Castro AL, Pena-Flores GP, , 2010. Interruption of transmission of Onchocerca volvulus in the Oaxaca focus, Mexico. Am J Trop Med Hyg 83: 2127. [Google Scholar]
  13. Gonzalez RJ, Cruz-Ortiz N, Rizzo N, Richards J, Zea-Flores G, , 2009. Successful interruption of transmission of Onchocerca volvulus in the Escuintla-Guatemala focus, Guatemala. PLoS Negl Trop Dis 3: e404. [Google Scholar]
  14. Rodríguez-Pérez MA, Lutzow-Steiner MA, Segura-Cabrera A, Lizarazo-Ortega C, Domínguez-Vázquez A, , 2008. Rapid suppression of Onchocerca volvulus transmission in two communities of the southern Chiapas focus, Mexico, achieved by quarterly treatments with Mectizan. Am J Trop Med Hyg 79: 239244. [Google Scholar]
  15. Lloyd MM, Gilbert G, TebaoTaha N, Weil G, Meite A, Kouakou IMM, , 2015. Conventional parasitology and DNA-based diagnostic methods for onchocerciasis elimination programmes. Acta Trop 146: 114118. [Google Scholar]
  16. Ogunrinade AF, Awolola SO, Rotimi O, Chandrashekar R, , 2000. Longitudinal studies of skin microfilaria and antibody conversion rates in children living in an endemic focus of onchocerciasis in Nigeria. J Trop Pediatr 46: 348351. [Google Scholar]
  17. Solomon AW, Engels D, Bailey RL, Blake IM, Brooker S, , 2012. A diagnostics platform for the integrated mapping, monitoring, and surveillance of neglected tropical diseases: rationale and target product profiles. PLoS Negl Trop Dis 6: e1746. [Google Scholar]
  18. Tadesse Z, Hailemariam A, Kolaczinski JH, , 2008. Potential for integrated control of neglected tropical diseases in Ethiopia. Trans R Soc Trop Med Hyg 102: 213214. [Google Scholar]
  19. Deribe K, Meribo K, Gebre T, Hailu A, Ali A, Aseffa A, Davey G, , 2012. The burden of neglected tropical diseases in Ethiopia, and opportunities for integrated control and elimination. Parasit Vectors 5: 240. [Google Scholar]
  20. Lammie PJ, Moss DM, Brook Goodhew E, Hamlin K, Krolewiecki A, , 2012. Development of a new platform for neglected tropical disease surveillance. Int J Parasitol 42: 797800. [Google Scholar]
  21. Moss DM, Priest JW, Boyd A, Weinkopff T, Kucerova Z, , 2011. Multiplex bead assay for serum samples from children in Haiti enrolled in a drug study for the treatment of lymphatic filariasis. Am J Trop Med Hyg 85: 229237. [Google Scholar]
  22. Hamlin KL, Moss DM, Priest JW, Roberts J, Kubofcik J, Gass K, , 2012. Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti. PLoS Negl Trop Dis 6: e1941. [Google Scholar]
  23. Priest JW, Moss DM, Arnold BF, Hamlin K, Jones CC, Lammie PJ, , 2015. Seroepidemiology of toxoplasma in a coastal region of Haiti: multiplex bead assay detection of immunoglobulin G antibodies that recognize the SAG2A antigen. Epidemiol Infect 143: 618630. [Google Scholar]
  24. Fujii Y, Kaneko S, Nzou SM, Mwau M, Njenga SM, Tanigawa C, , 2014. Serological surveillance development for tropical infectious diseases using simultaneous microsphere-based multiplex assays and finite mixture models. PLoS Negl Trop Dis 8: e3040. [Google Scholar]
  25. Moss DM, Priest JW, Hamlin KL, Derado G, Herbein J, Petri WA, , 2014. Longitudinal evaluation of enteric protozoa in Haitian children by stool exam and multiplex serologic assay. Am J Trop Med Hyg 90: 653660. [Google Scholar]
  26. Goodhew EB, Priest JW, Moss DM, Zhong G, Munoz B, Mkocha H, Martin DL, West SK, Gaydos C, Lammie PJ, , 2012. CT694 and pgp3 as serological tools for monitoring trachoma programs. PLoS Negl Trop Dis 6: e1873. [Google Scholar]
  27. Lammie PJ, Weil G, Noordin R, Kaliraj P, Steel C, Goodman D, Lakshmikanthan VB, Ottesen E, , 2004. Recombinant antigen-based antibody assays for the diagnosis and surveillance of lymphatic filariasis- a multicenter trial. Filaria J 3: 9. [Google Scholar]
  28. Priest JW, Moss DM, Visvesvara GS, Jones CC, Li A, Issac-Renton JL, , 2010. Multiplex assay detection of immunoglobulin G antibodies that recognize Giardia intestinalis and Cryptosporidium parvum antigens. Clin Vaccine Immunol 17: 16951707. [Google Scholar]
  29. Cabrera Z, Parkhouse RM, Forsyth K, Gomez Priego A, Pabon R, Yarzabal L, , 1989. Specific detection of human antibodies to Onchocerca volvulus . Trop Med Parasitol 40: 454459. [Google Scholar]
  30. Lobos E, Weiss N, Karam M, Taylor HR, Ottesen EA, , 1991. An immunogenic Onchocerca volvulus antigen: a specific and early marker of infection. Science 251: 16031605. [Google Scholar]
  31. Bradley JE, Tuan RS, Shepley KJ, Tree TIM, Maizels R, Helm WF, , 1993. Onchocerca volvulus: characterization of an immunodominant hypodermal antigen present in adult and larval parasites. Exp Parasitol 77: 414424. [Google Scholar]
  32. Lucius R, Erondu N, Kern A, Donelson JE, , 1988. Molecular cloning of an immunodominant antigen of Onchocerca volvulus . J Exp Med 168: 11991204. [Google Scholar]
  33. Tume CB, Ngu JL, McKerrow JL, Seigel J, Sun E, Barr PJ, , 1997. Characterization of a recombinant Onchocerca volvulus antigen (Ov33) produced in yeast. Am J Trop Med Hyg 57: 626633. [Google Scholar]
  34. Santiago Mejia J, Nkenfou C, Southworth MW, Perler FB, Carlow CK, , 1994. Expression of an Onchocercha volvulus Ov33 homolog in Dirofilariaimmitis: potential in immunodiagnosis of heartworm. Parasite Immunol 16: 297303. [Google Scholar]
  35. Lucius R, Kern A, Seeber F, Pogonka T, Willenbucher J, Taylor HR, , 1992. Specific and sensitive IgG4 immunodiagnosis of onchocerciasis with a recombinant 33kD Onchocerca volvulus protein (Ov33). Trop Med Parasitol 43: 139145. [Google Scholar]
  36. Lazzeri M, Nutman TB, Weiss N, , inventors, The United States of America, assignee, 1995. Nucleotide molecule encoding a specific Onchocerca volvulus antigen for the immunodiagnosis of onchocerciasis. United States Patent Number 5416009. May 16, 1995.
  37. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, , 2011. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12: 77. [Google Scholar]
  38. R_Development_Core_Team, 2008. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org. Accessed April 24, 2015. [Google Scholar]
  39. DeLong ER, DeLong DM, Clarke-Pearson DL, , 1988. Comparing the areas under two of more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44: 837845. [Google Scholar]
  40. Steel C, Golden A, Stevens E, Yokobe L, Domingo GJ, de Los Santos T, Nutman TB, , 2015. A rapid point of contact tool for mapping and integrated surveillance of Wuchereria bancrofti and Onchocerca volvulus infection. Clin Vaccine Immunol 22: 896901. [Google Scholar]
  41. Hong XQ, Santiago Mejia S, Kumar S, Perler FB, Carlow KS, , 1995. Cloning and expression of DiT33 from Dirofilaria immitis: a specific and early marker of heartworm infection. Parasitology 112: 331338. [Google Scholar]
  42. Frank GR, Mondesire RR, Brandt KS, Wisnewski N, , 1998. Antibody to the Dirofilaria immitis aspartyl protease inhibitor homologue is a diagnostic marker for feline heartworm infections. J Parasitol 84: 12311236. [Google Scholar]
  43. Berdoulay P, Levy JK, Snyder PS, Pegelow MJ, Hooks JL, Tavares LM, , 2004. Comparison of serological tests for the detection of natural heartworm infection in cats. J Am Anim Hosp Assoc 40: 376384. [Google Scholar]

Data & Media loading...

  • Received : 24 Jun 2016
  • Accepted : 16 Feb 2017
  • Published online : 03 Jul 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error