1921
Volume 96, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

-based vector control strategies have been proposed as a means to augment the currently existing measures for controlling dengue and chikungunya vectors. Prior to utilizing as a novel vector control strategy, it is crucial to understand the –mosquito interactions. In this study, field surveys were conducted to screen for the infection status of in field-collected . The effects of in its native host toward the replication and dissemination of chikungunya virus (CHIKV) was also studied. The prevalence of -infected field-collected was estimated to be 98.6% ( = 142) for females and 95.1% ( = 102) for males in the population studied. The were naturally infected with both AlbA and AlbB strains. We also found that the native has no impact on CHIKV infection and minimal effect on CHIKV dissemination to secondary organs.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.16-0516
2017-01-11
2018-12-14
Loading full text...

Full text loading...

/deliver/fulltext/14761645/96/1/148.html?itemId=/content/journals/10.4269/ajtmh.16-0516&mimeType=html&fmt=ahah

References

  1. Gratz NG, , 2004. Critical review of the vector status of Aedes albopictus . Med Vet Entomol 18: 215227.[Crossref] [Google Scholar]
  2. Bonizzoni M, Gasperi G, Chen X, James AA, , 2013. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 29: 460468.[Crossref] [Google Scholar]
  3. Delatte H, Paupy C, Dehecq JS, Thiria J, Failloux AB, Fontenille D, , 2008. Aedes albopictus, vector of chikungunya and dengue viruses in Reunion Island: biology and control. Parasite 15: 313.[Crossref] [Google Scholar]
  4. Paupy C, Kassa F, Caron M, Nkoghe D, Leroy E, , 2012. A chikungunya outbreak associated with the vector Aedes albopictus in remote villages of Gabon. Vector Borne Zoonotic Dis 12: 167169.[Crossref] [Google Scholar]
  5. Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM, Jadhav SM, Sudeep AB, Mishra AC, , 2007. Genetic divergence of chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J Gen Virol 88: 19671976.[Crossref] [Google Scholar]
  6. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A, , 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370: 18401846.[Crossref] [Google Scholar]
  7. Huang J, Yang C, Su C, Chang S, Cheng C, Yu S, Lin C, Shu P, , 2009. Imported chikungunya virus strains, Taiwan, 2006–2009. Emerg Infect Dis 15: 18541856.[Crossref] [Google Scholar]
  8. Leo Y, Chow A, Tan L, Lye D, Lin L, Ng LC, , 2008. Chikungunya outbreak, Singapore. Emerg Infect Dis 15: 836837.[Crossref] [Google Scholar]
  9. Sam I, Chan Y, Chan S, Loong S, Chin H, Hooi P, Ganeswrie R, Abubakar S, , 2009. Chikungunya virus of Asian and central/east African genotypes in Malaysia. J Clin Virol 46: 180183.[Crossref] [Google Scholar]
  10. Rianthavorn P, Prianantathavorn K, Wuttirattanakowit N, Theamboonlers A, Poovorawan Y, , 2010. An outbreak of chikungunya in southern Thailand from 2008 to 2009 caused by African strains with A226V mutation. Int J Infect Dis 14: 161165.[Crossref] [Google Scholar]
  11. Gibney KB, Fischer M, Prince HE, Kramer LD, St George K, Kosoy OL, Laven JJ, Staples JE, , 2011. Chikungunya fever in the United States: a fifteen year review of cases. Clin Infect Dis 52: e121e126.[Crossref] [Google Scholar]
  12. AbuBakar S, Sam I-C, Wong P-F, Hooi P-S, Roslan N, MatRahim N, , 2007. Reemergence of endemic chikungunya, Malaysia. Emerg Infect Dis J 13: 147.[Crossref] [Google Scholar]
  13. Noridah O, Paranthaman V, Nayar SK, Masliza M, Ranjit K, Norizah I, Chem YK, Mustafa B, Kumarasamy V, Chua KB, , 2007. Outbreak of chikungunya due to virus of Central/East African genotype in Malaysia. Med J Malaysia 62: 323328. [Google Scholar]
  14. Ttsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S, , 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201.[Crossref] [Google Scholar]
  15. de Lamballerie X, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, Gould EA, , 2008. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol J 5: 14.[Crossref] [Google Scholar]
  16. Jeyaprakash A, Hoy MA, , 2000. Long PCR improves Wolbachia DNA amplification: wsp sequences found in 76% of sixty-three arthropod species. Insect Mol Biol 9: 393405.[Crossref] [Google Scholar]
  17. Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH, , 2008. How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiol Lett 281: 215220.[Crossref] [Google Scholar]
  18. Breeuwer JAJ, Werren JH, , 1990. Microorganisms associated with chromosome destruction and reproductive isolation between two insect species. Nature 346: 558560.[Crossref] [Google Scholar]
  19. O'Neill SL, Karr TL, , 1990. Bidirectional incompatibility between conspecific populations of Drosophila simulans . Nature 348: 178180.[Crossref] [Google Scholar]
  20. Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, Johnson P, Ritchie SA, Richardson KM, Doig C, Endersby NM, Hoffmann AA, , 2011. Dynamics of the “popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583595.[Crossref] [Google Scholar]
  21. Joubert DA, Walker T, Carrington LB, De Bruyne JT, Kien DHT, Hoang NLT, Chau NVV, Iturbe-Ormaetxe I, Simmons CP, O'Neill SL, , 2016. Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management. PLoS Pathog 12: e1005434.[Crossref] [Google Scholar]
  22. Skelton E, Rancès E, Frentiu FD, Kusmintarsih ES, Iturbe-Ormaetxe I, Caragata EP, Woolfit M, O'Neill SL, , 2015. A native Wolbachia endosymbiont does not limit dengue virus infection in the mosquito Aedes notoscriptus (Diptera: Culicidae). J Med Entomol 53: 401408.[Crossref] [Google Scholar]
  23. Mousson L, Zouache K, Arias-Goeta C, Raquin V, Mavingui P, Failloux AB, , 2012. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus . PLoS Negl Trop Dis 6: 10.[Crossref] [Google Scholar]
  24. Glaser RL, Meola MA, , 2010. The native Wolbachia endosymbionts of Drosophila melanogaster and Culex quinquefasciatus increase host resistance to West Nile virus infection. PLoS One 5: e11977.[Crossref] [Google Scholar]
  25. Hedges LM, Brownlie JC, O'Neill SL, Johnson KN, , 2008. Wolbachia and virus protection in insects. Science 322: 702.[Crossref] [Google Scholar]
  26. Teixeira L, Ferreira A, Ashburner M, , 2008. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster . PLoS Biol 6: 27532763.[Crossref] [Google Scholar]
  27. Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O'Neill SL, , 2014. Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8: e3115.[Crossref] [Google Scholar]
  28. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, , 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.[Crossref] [Google Scholar]
  29. Zhang D, Lees RS, Xi Z, Gilles JRL, Bourtzis K, , 2015. Combining the sterile insect technique with Wolbachia-based approaches: II—a safer approach to Aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PLoS One 10: e0135194.[Crossref] [Google Scholar]
  30. Bourtzis K, Dobson SL, Xi Z, Rasgon JL, Calvitti M, Moreira LA, Bossin HC, Moretti R, Baton LA, Hughes GL, Mavingui P, Gilles JRL, , 2014. Harnessing mosquito—Wolbachia symbiosis for vector and disease control. Acta Trop 132: S150S163.[Crossref] [Google Scholar]
  31. Ministry of Health. Guidelines on the Use of Ovitrap for Aedes Surveillance. Kuala Lumpur, Malaysia: MOH. [Google Scholar]
  32. Mahadevan S, Cheong WH, Hassan A, , 1973. Vectors of Dengue and Dengue Haemorrhagic Fever in West Malaysia. Kuala Lumpur, Malaysia: Institute for Medical Research. [Google Scholar]
  33. Zhou W, Rousset F, O'Neill S, , 1998. Phylogeny and PCR based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265: 509515.[Crossref] [Google Scholar]
  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, , 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 27252729.[Crossref] [Google Scholar]
  35. Ahantarig A, Trinachartvanit W, Kittayapong P, , 2008. Relative Wolbachia density of field-collected Aedes albopictus mosquitoes in Thailand. J Vector Ecol 33: 173177.[Crossref] [Google Scholar]
  36. Armbruster P, Damsky WE, Giordano R, Birungi J, Munstermann LE, Conn JE, , 2003. Infection of new- and old-world Aedes albopictus (Diptera: Culicidae) by the intracellular parasite Wolbachia: implications for host mitochondrial DNA evolution. J Med Entomol 40: 356360.[Crossref] [Google Scholar]
  37. Dutton TJ, Sinkins SP, , 2004. Strain-specific quantification of Wolbachia density in Aedes albopictus and effects of larval rearing conditions. Insect Mol Biol 13: 317322.[Crossref] [Google Scholar]
  38. Kittayapong P, Baimai V, O'Neill SL, , 2002. Field prevalence of Wolbachia in the mosquito vector Aedes albopictus . Am J Trop Med Hyg 66: 108111. [Google Scholar]
  39. Sinkins SP, Braig HR, O'Neill SL, , 1995. Wolbachia superinfections and the expression of cytoplasmic incompatibility. Proc Biol Sci 261: 325330.[Crossref] [Google Scholar]
  40. Turelli M, Hoffmann AA, , 1991. Rapid spread of an inherited incompatibility factor in California Drosophila . Nature 353: 440442.[Crossref] [Google Scholar]
  41. Turelli M, Hoffmann AA, , 1995. Cytoplasmic incompatibility in Drosophila simulans: dynamics and parameter estimates from natural populations. Genetics 140: 13191338. [Google Scholar]
  42. Kittayapong P, Baisley KJ, Sharpe RG, Baimai V, O'Neill SL, , 2001. Maternal transmission efficiency of Wolbachia superinfections in Aedes albopictus populations in Thailand. Am J Trop Med Hyg 66: 103107. [Google Scholar]
  43. Ahmed MZ, Araujo-Jnr EV, Welch JJ, Kawahara AY, , 2015. Wolbachia in butterflies and moths: geographic structure in infection frequency. Front Zool 12: 16.[Crossref] [Google Scholar]
  44. Kambhampati S, Rai KS, Burgun SJ, , 1993. Unidirectional cytoplasmic incompatibility in the mosquito, Aedes albopictus . Evolution 47: 673677.[Crossref] [Google Scholar]
  45. Kittayapong P, Baisley KJ, Baimai V, , 2000. Distribution and diversity of Wolbachia infections in southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 37: 340345.[Crossref] [Google Scholar]
  46. Tortosa P, Charlat S, Labbé P, Dehecq J-S, Barré H, Weill M, , 2010. Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility? PLoS One 5: 9700.[Crossref] [Google Scholar]
  47. Wiwatanaratanabutr I, Kittayapong P, , 2009. Effects of crowding and temperature on Wolbachia infection density among life cycle stages of Aedes albopictus . J Invertebr Pathol 102: 220224.[Crossref] [Google Scholar]
  48. Tesh RB, Gubler DJ, Rosen L, , 1976. Variation among geographic strains of Aedes albopictus in susceptibility to infection with chikungunya virus. Am J Trop Med Hyg 25: 326335. [Google Scholar]
  49. Turell MJ, Beaman JR, Tammariello RF, , 1992. Susceptibility of selected strains of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) to chikungunya virus. J Med Entomol 29: 4953.[Crossref] [Google Scholar]
  50. Sam I-C, Loong S-K, Michael JC, Chua C-L, Wan Sulaiman WY, Vythilingam I, Chan S-Y, Chiam C-W, Yeong Y-S, AbuBakar S, Chan Y-F, , 2012. Genotypic and phenotypic characterization of chikungunya virus of different genotypes from Malaysia. PLoS One 7: e50476.[Crossref] [Google Scholar]
  51. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, Thiria J, Dehecq J-S, Fontenille D, Schuffenecker I, Despres P, Failloux A-B, , 2007. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus . PLoS One 2: e1168.[Crossref] [Google Scholar]
  52. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL, , 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium . Cell 139: 12681278.[Crossref] [Google Scholar]
  53. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA, , 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.[Crossref] [Google Scholar]
  54. Caragata EP, Rancès E, Hedges LM, Gofton AW, Johnson KN, O'Neill SL, McGraw EA, , 2013. Dietary cholesterol modulates pathogen blocking by Wolbachia . PLoS Pathog 9: e1003459.[Crossref] [Google Scholar]
  55. Lu P, Bian G, Pan X, Xi Z, , 2012. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells. PLoS Negl Trop Dis 6: e1754.[Crossref] [Google Scholar]
  56. Osborne SE, Leong YS, O'Neill SL, Johnson KN, , 2009. Variation in antiviral protection mediated by different Wolbachia strains in Drosophila simulans . PLoS Pathog 5: e1000656.[Crossref] [Google Scholar]
  57. Wong HV, Vythilingam I, Sulaiman WYW, Lulla A, Merits A, Chan YF, Sam I-C, , 2016. Detection of persistent chikungunya virus RNA but not infectious virus in experimental vertical transmission in Aedes aegypti from Malaysia. Am J Trop Med Hyg 94: 182186.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.16-0516
Loading
/content/journals/10.4269/ajtmh.16-0516
Loading

Data & Media loading...

  • Received : 23 Jun 2016
  • Accepted : 27 Sep 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error