Volume 96, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Dengue is a viral pandemic caused by four dengue virus serotypes (DENV-1, 2, 3, and 4) transmitted by mosquitoes. Reportedly, there has been a 2-fold increase in dengue cases every decade. An efficacious tetravalent vaccine, which can provide long-term immunity against all four serotypes in all target populations, is still unavailable. Despite the progress being made in the live virus-based dengue vaccines, the World Health Organization strongly recommends the development of alternative approaches for safe, affordable, and efficacious dengue vaccine candidates. We have explored virus-like particles (VLPs)-based nonreplicating subunit vaccine approach and have developed recombinant envelope ectodomains of DENV-1, 2, and 3 expressed in . These self-assembled into VLPs without pre-membrane (prM) protein, which limits the generation of enhancing antibodies, and elicited type-specific neutralizing antibodies against the respective serotype. Encouraged by these results, we have extended this work further by developing –expressed DENV-4 ectodomain (DENV-4 E) in this study, which was found to be glycosylated and assembled into spherical VLPs without prM, and displayed critical neutralizing epitopes on its surface. These VLPs were found to be immunogenic in mice and elicited DENV-4-specific neutralizing antibodies, which were predominantly directed against envelope domain III, implicated in host-receptor recognition and virus entry. These observations underscore the potential of VLP-based nonreplicative vaccine approach as a means to develop a safe, efficacious, and tetravalent dengue subunit vaccine. This work paves the way for the evaluation of a DENV E-based tetravalent dengue vaccine candidate, as an alternative to live virus-based dengue vaccines.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI, , 2013. The global distribution and burden of dengue. Nature 496: 504507.[Crossref] [Google Scholar]
  2. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, Hay SI, Bedi N, Bensenor IM, Castaneda-Orjuela CA, Chuang TW, Gibney KB, Memish ZA, Rafay A, Ukwaja KN, Yonemoto N, Murray CJ, , 2016. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. Lancet Infect Dis 16: 712723.[Crossref] [Google Scholar]
  3. Gubler DJ, Kuno G, Markoff L, Knipe DM, Howley PM, , 2007. Flaviviruses. , eds. Fields Virology, 5th edition. Philadelphia, PA: Wolters Kluwer and Lippincott Williams and Wilkins, 11531252. [Google Scholar]
  4. Swaminathan S, Khanna N, , 2009. Dengue: recent advances in biology and current status of translational research. Curr Mol Med 9: 152173.[Crossref] [Google Scholar]
  5. WHO, 2016. Fact Sheet on Dengue and Severe Dengue. Available at: http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed June 20, 2016. [Google Scholar]
  6. Halstead SB, , 2014. Dengue antibody-dependent enhancement: knowns and unknowns. Microbiol Spectr 2. doi:10.1128/microbiolspec.AID-0022-2014.[Crossref] [Google Scholar]
  7. Swaminathan S, Batra G, Khanna N, , 2010. Dengue vaccines: state of the art. Expert Opin Ther Pat 20: 819835.[Crossref] [Google Scholar]
  8. Schmitz J, Roehrig J, Barrett A, Hombach J, , 2011. Next generation dengue vaccines: a review of candidates in preclinical development. Vaccine 29: 72767284.[Crossref] [Google Scholar]
  9. Coller BA, Clements DE, , 2011. Dengue vaccines: progress and challenges. Curr Opin Immunol 23: 391398.[Crossref] [Google Scholar]
  10. Thomas SJ, Endy TP, , 2011. Vaccines for the prevention of dengue: development update. Hum Vaccin 7: 674684.[Crossref] [Google Scholar]
  11. Guy B, Briand O, Lang J, Saville M, Jackson N, , 2015. Development of the Sanofi Pasteur tetravalent dengue vaccine: one more step forward. Vaccine 33: 71007111.[Crossref] [Google Scholar]
  12. Hadinegoro SR, Arredondo-Garcia JL, Capeding MR, Deseda C, Chotpitayasunondh T, Dietze R, Muhammad Ismail HI, Reynales H, Limkittikul K, Rivera-Medina DM, Tran HN, Bouckenooghe A, Chansinghakul D, Cortes M, Fanouillere K, Forrat R, Frago C, Gailhardou S, Jackson N, Noriega F, Plennevaux E, Wartel TA, Zambrano B, Saville M, CYD-TDV Dengue Vaccine Working Group; , 2015. Efficacy and long-term safety of a dengue vaccine in regions of endemic disease. N Engl J Med 373: 11951206.[Crossref] [Google Scholar]
  13. Halstead SB, Russell PK, , 2016. Protective and immunological behavior of chimeric yellow fever dengue vaccine. Vaccine 34: 16431647.[Crossref] [Google Scholar]
  14. Edelman R, , 2011. Unique challenges faced by the clinical evaluation of dengue vaccines. Expert Rev Vaccines 10: 133136.[Crossref] [Google Scholar]
  15. Thomas SJ, , 2011. The necessity and quandaries of dengue vaccine development. J Infect Dis 203: 299303.[Crossref] [Google Scholar]
  16. Swaminathan S, Khanna N, Herring B, Mahalingam S, , 2013. Dengue vaccine efficacy trial: does interference cause failure? Lancet Infect Dis 13: 191192.[Crossref] [Google Scholar]
  17. Chackerian B, , 2007. Virus-like particles: flexible platforms for vaccine development. Expert Rev Vaccines 6: 381390.[Crossref] [Google Scholar]
  18. Wang PG, Kudelko M, Lo J, Siu LY, Kwok KT, Sachse M, Nicholls JM, Bruzzone R, Altmeyer RM, Nal B, , 2009. Efficient assembly and secretion of recombinant subviral particles of the four dengue serotypes using native prM and E proteins. PLoS One 4: e8325.[Crossref] [Google Scholar]
  19. Liu W, Jiang H, Zhou J, Yang X, Tang Y, Fang D, Jiang L, , 2010. Recombinant dengue virus-like particles from Pichia pastoris: efficient production and immunological properties. Virus Genes 40: 5359.[Crossref] [Google Scholar]
  20. Kuwahara M, Konishi E, , 2010. Evaluation of extracellular subviral particles of dengue virus type 2 and Japanese encephalitis virus produced by Spodoptera frugiperda cells for use as vaccine and diagnostic antigens. Clin Vaccine Immunol 17: 15601566.[Crossref] [Google Scholar]
  21. Tang YX, Jiang LF, Zhou JM, Yin Y, Yang XM, Liu WQ, Fang DY, , 2012. Induction of virus-neutralizing antibodies and T cell responses by dengue virus type 1 virus-like particles prepared from Pichia pastoris . Chin Med J (Engl) 125: 19861992. [Google Scholar]
  22. Bachmann MF, Jennings GT, , 2010. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10: 787796.[Crossref] [Google Scholar]
  23. Yildiz I, Shukla S, Steinmetz NF, , 2011. Applications of viral nanoparticles in medicine. Curr Opin Biotechnol 22: 901908.[Crossref] [Google Scholar]
  24. Perrone LA, Ahmad A, Veguilla V, Lu X, Smith G, Katz JM, Pushko P, Tumpey TM, , 2009. Intranasal vaccination with 1918 influenza virus-like particles protects mice and ferrets from lethal 1918 and H5N1 influenza virus challenge. J Virol 83: 57265734.[Crossref] [Google Scholar]
  25. Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, Lewis MG, Higgs S, Rossmann MG, Rao S, Nabel GJ, , 2010. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Nat Med 16: 334338.[Crossref] [Google Scholar]
  26. Lindenbach BD, Thiel HJ, Rice CM, Knipe DM, Howley PM, , 2007. Flaviviridae: The viruses and their replication. , eds. Fields Virology, 5th edition. Philadelphia, PA: Wolters Kluwer and Lippincott Williams and Wilkins, 11011152. [Google Scholar]
  27. Gromowski GD, Barrett AD, , 2007. Characterization of an antigenic site that contains a dominant, type-specific neutralization determinant on the envelope protein domain III (ED3) of dengue 2 virus. Virology 366: 349360.[Crossref] [Google Scholar]
  28. Shrestha B, Brien JD, Sukupolvi-Petty S, Austin SK, Edeling MA, Kim T, O'Brien KM, Nelson CA, Johnson S, Fremont DH, Diamond MS, , 2010. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog 6: e1000823.[Crossref] [Google Scholar]
  29. Dejnirattisai W, Jumnainsong A, Onsirisakul N, Fitton P, Vasanawathana S, Limpitikul W, Puttikhunt C, Edwards C, Duangchinda T, Supasa S, Chawansuntati K, Malasit P, Mongkolsapaya J, Screaton G, , 2010. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328: 745748.[Crossref] [Google Scholar]
  30. Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, van der Ende-Metselaar H, Lei HY, Wilschut J, Smit JM, , 2010. Immature dengue virus: a veiled pathogen? PLoS Pathog 6: e1000718.[Crossref] [Google Scholar]
  31. Mani S, Tripathi L, Raut R, Tyagi P, Arora U, Barman T, Sood R, Galav A, Wahala W, de Silva A, Swaminathan S, Khanna N, , 2013. Pichia pastoris-expressed dengue 2 envelope forms virus-like particles without pre-membrane protein and induces high titer neutralizing antibodies. PLoS One 8: e64595.[Crossref] [Google Scholar]
  32. Poddar A, Ramasamy V, Shukla R, Rajpoot RK, Arora U, Jain SK, Swaminathan S, Khanna N, , 2016. Virus-like particles derived from Pichia pastoris-expressed dengue virus type 1 glycoprotein elicit homotypic virus-neutralizing envelope domain III-directed antibodies. BMC Biotechnol 16: 50.[Crossref] [Google Scholar]
  33. Tripathi L, Mani S, Raut R, Poddar A, Tyagi P, Arora U, de Silva A, Swaminathan S, Khanna N, , 2015. Pichia pastoris-expressed dengue 3 envelope-based virus-like particles elicit predominantly domain III-focused high titer neutralizing antibodies. Front Microbiol 6: 1005.[Crossref] [Google Scholar]
  34. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM, , 2005. Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249270.[Crossref] [Google Scholar]
  35. Kraus AA, Messer W, Haymore LB, de Silva AM, , 2007. Comparison of plaque- and flow cytometry-based methods for measuring dengue virus neutralization. J Clin Microbiol 45: 37773780.[Crossref] [Google Scholar]
  36. Henchal EA, Gentry MK, McCown JM, Brandt WE, , 1982. Dengue virus-specific and flavivirus group determinants identified with monoclonal antibodies by indirect immunofluorescence. Am J Trop Med Hyg 31: 830836. [Google Scholar]
  37. Brien JD, Austin SK, Sukupolvi-Petty S, O'Brien KM, Johnson S, Fremont DH, Diamond MS, , 2010. Genotype-specific neutralization and protection by antibodies against dengue virus type 3. J Virol 84: 1063010643.[Crossref] [Google Scholar]
  38. Sukupolvi-Petty S, Austin SK, Engle M, Brien JD, Dowd KA, Williams KL, Johnson S, Rico-Hesse R, Harris E, Pierson TC, Fremont DH, Diamond MS, , 2010. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84: 92279239.[Crossref] [Google Scholar]
  39. Sukupolvi-Petty S, Brien JD, Austin SK, Shrestha B, Swayne S, Kahle K, Doranz BJ, Johnson S, Pierson TC, Fremont DH, Diamond MS, , 2013. Functional analysis of antibodies against dengue virus type 4 reveals strain-dependent epitope exposure that impacts neutralization and protection. J Virol 87: 88268842.[Crossref] [Google Scholar]
  40. Wahala WM, Donaldson EF, de Alwis R, Accavitti-Loper MA, Baric RS, de Silva AM, , 2010. Natural strain variation and antibody neutralization of dengue serotype 3 viruses. PLoS Pathog 6: e1000821.[Crossref] [Google Scholar]
  41. de Alwis R, Beltramello M, Messer WB, Sukupolvi-Petty S, Wahala WM, Kraus A, Olivarez NP, Pham Q, Brien JD, Tsai WY, Wang WK, Halstead S, Kliks S, Diamond MS, Baric R, Lanzavecchia A, Sallusto F, de Silva AM, , 2011. In-depth analysis of the antibody response of individuals exposed to primary dengue virus infection. PLoS Negl Trop Dis 5: e1188.[Crossref] [Google Scholar]
  42. Smith SA, Zhou Y, Olivarez NP, Broadwater AH, de Silva AM, Crowe JE, Jr, 2012. Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J Virol 86: 26652675.[Crossref] [Google Scholar]
  43. Smith SA, de Alwis AR, Kose N, Harris E, Ibarra KD, Kahle KM, Pfaff JM, Xiang X, Doranz BJ, de Silva AM, Austin SK, Sukupolvi-Petty S, Diamond MS, Crowe JE, Jr, 2013. The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. MBio 4: e00873e13. [Google Scholar]
  44. Arora U, Tyagi P, Swaminathan S, Khanna N, , 2013. Virus-like particles displaying envelope domain III of dengue virus type 2 induce virus-specific antibody response in mice. Vaccine 31: 873878.[Crossref] [Google Scholar]
  45. Modis Y, Ogata S, Clements D, Harrison SC, , 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci USA 100: 69866991.[Crossref] [Google Scholar]
  46. Sharp M, Dohme Corp, . A phase I randomized, double-blind, placebo-controlled, dose-escalation study to evaluate the safety, tolerability, and immunogenicity of a tetravalent recombinant subunit dengue vaccine (V180) in Healthy adults. ClinicalTrials.gov Identifier NCT01477580. Available at: https://clinicaltrials.gov/ct2/show/NCT01477580. Accessed 20, 2016.
  47. Clements DE, Coller BA, Lieberman MM, Ogata S, Wang G, Harada KE, Putnak JR, Ivy JM, McDonell M, Bignami GS, Peters ID, Leung J, Weeks-Levy C, Nakano ET, Humphreys T, , 2010. Development of a recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and monkeys. Vaccine 28: 27052715.[Crossref] [Google Scholar]
  48. Govindarajan D, Meschino S, Guan L, Clements DE, ter Meulen JH, Casimiro DR, Coller BA, Bett AJ, , 2015. Preclinical development of a dengue tetravalent recombinant subunit vaccine: immunogenicity and protective efficacy in nonhuman primates. Vaccine 33: 41054116.[Crossref] [Google Scholar]
  49. Watanabe S, Chan KW, Wang J, Rivino L, Lok SM, Vasudevan SG, , 2015. Dengue virus infection with highly neutralizing levels of cross-reactive antibodies causes acute lethal small intestinal pathology without a high level of viremia in mice. J Virol 89: 58475861.[Crossref] [Google Scholar]

Data & Media loading...

Supplemental Figures

  • Received : 20 Jun 2016
  • Accepted : 27 Sep 2016
  • Published online : 11 Jan 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error