1921
Volume 97, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract.

Buruli ulcer is an emerging infectious disease caused by that has been reported from 33 countries. Antimicrobial agents either alone or in combination with surgery have been proved to be clinically relevant and therapeutic strategies have been deduced mainly from the empirical experience. The genome sequences of . strain AGY99, ecovar liflandii, and three strains were analyzed to predict resistance in these bacteria. Fourteen putative antibiotic resistance genes from different antibiotics classes were predicted in and mutation in G (R431G) and A (T47A, V125I) genes were detected, that confer resistance to isoniazid and pyrazinamide, respectively. No mutations were detected in , A, B, L, , , A, 23S ribosomal RNA genes and promoter region of A and C genes associated with resistance. Our results reemphasize the usefulness of in silico analysis for the prediction of antibiotic resistance in fastidious bacteria.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.16-0478
2017-09-07
2018-11-14
Loading full text...

Full text loading...

/deliver/fulltext/14761645/97/3/tpmd160478.html?itemId=/content/journals/10.4269/ajtmh.16-0478&mimeType=html&fmt=ahah

References

  1. Silva MT, Portaels F, Pedrosa J, , 2009. Pathogenetic mechanisms of the intracellular parasite Mycobacterium ulcerans leading to Buruli ulcer. Lancet Infect Dis 9: 699710.
  2. Yotsu RR, Nakanaga K, Hoshino Y, Suzuki K, Ishii N, , 2012. Buruli ulcer and current situation in Japan: a new emerging cutaneous Mycobacterium infection. J Dermatol 39: 587593.
  3. Rodhain F, , 2012. Buruli ulcer: hypothetical modes of transmission of Mycobacterium ulcerans [in French]. Bull Acad Natl Med 196: 685690; discussion 690–681.
  4. Debacker M, Aguiar J, Steunou C, Zinsou C, Meyers WM, Portaels F, , 2005. Buruli ulcer recurrence, Benin. Emerg Infect Dis 11: 584589.
  5. Dega H, Robert J, Bonnafous P, Jarlier V, Grosset J, , 2000. Activities of several antimicrobials against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother 44: 23672372.
  6. Bentoucha A, Robert J, Dega H, Lounis N, Jarlier V, Grosset J, , 2001. Activities of new macrolides and fluoroquinolones against Mycobacterium ulcerans infection in mice. Antimicrob Agents Chemother 45: 31093112.
  7. Beissner M, , et al., 2010. A genotypic approach for detection, identification, and characterization of drug resistance in Mycobacterium ulcerans in clinical samples and isolates from Ghana. Am J Trop Med Hyg 83: 10591065.
  8. Marsollier L, Honore N, Legras P, Manceau AL, Kouakou H, Carbonnelle B, Cole ST, , 2003. Isolation of three Mycobacterium ulcerans strains resistant to rifampin after experimental chemotherapy of mice. Antimicrob Agents Chemother 47: 12281232.
  9. Converse PJ, Nuermberger EL, Almeida DV, Grosset JH, , 2011. Treating Mycobacterium ulcerans disease (Buruli ulcer): from surgery to antibiotics, is the pill mightier than the knife? Future Microbiol 6: 11851198.
  10. Lefrancois S, Robert J, Chauffour A, Ji B, Jarlier V, , 2007. Curing Mycobacterium ulcerans infection in mice with a combination of rifampin-streptomycin or rifampin-amikacin. Antimicrob Agents Chemother 51: 645650.
  11. Phillips RO, Sarfo FS, Abass MK, , Abotsi J, Wilson T, Forson M, Amoako YA, Thompson W, Asiedu K, Wansbrough-Jones M, 2014. Clinical and bacteriological efficacy of rifampin-streptomycin combination for two weeks followed by rifampin and clarithromycin for six weeks for treatment of Mycobacterium ulcerans disease. Antimicrob Agents Chemother 58: 11611166.
  12. Imbuluzqueta E, Gamazo C, Ariza J, Blanco-Prieto MJ, , 2010. Drug delivery systems for potential treatment of intracellular bacterial infections. Front Biosci (Landmark Ed) 15: 397417.
  13. Suykerbuyk P, Vleminckx K, Pasmans F, , Stragier P, Ablordey A, Tran HT, Hermans K, Fleetwood M, Meyers WM, Portaels F, 2007. Mycobacterium liflandii infection in European colony of Silurana tropicalis. Emerg Infect Dis 13: 743746.
  14. Zhang T, Bishai WR, Grosset JH, Nuermberger EL, , 2010. Rapid assessment of antibacterial activity against Mycobacterium ulcerans by using recombinant luminescent strains. Antimicrob Agents Chemother 54: 28062813.
  15. Biswas S, Raoult D, Rolain JM, , 2008. A bioinformatic approach to understanding antibiotic resistance in intracellular bacteria through whole genome analysis. Int J Antimicrob Agents 32: 207220.
  16. Stinear TP, , et al., 2007. Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 17: 192200.
  17. Demangel C, Stinear TP, Cole ST, , 2009. Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat Rev Microbiol 7: 5060.
  18. Gupta SK, Padmanabhan BR, Diene SM, , Lopez-Rojas R, Kempf M, Landraud L, Rolain JM, 2014. ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58: 212220.
  19. Aziz RK, , et al., 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
  20. Hall T, , 1999. BioEdit: biological sequence allignement editor for Win95/98/NT/2K/XP. Nucleic Acids Symp Ser 41: 95–98.
  21. Aubry A, Veziris N, Cambau E, Truffot-Pernot C, Jarlier V, Fisher LM, , 2006. Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50: 104112.
  22. Maruri F, Sterling TR, Kaiga AW, , Blackman A, van der Heijden YF, Mayer C, Cambau E, Aubry A, 2012. A systematic review of gyrase mutations associated with fluoroquinolone-resistant Mycobacterium tuberculosis and a proposed gyrase numbering system. J Antimicrob Chemother 67: 819831.
  23. Zhang H, Deng JY, Bi LJ, , Zhou YF, Zhang ZP, Zhang CG, Zhang Y, Zhang XE, 2008. Characterization of Mycobacterium tuberculosis nicotinamidase/pyrazinamidase. FEBS J 275: 753762.
  24. Zhang H, Bi LJ, Li CY, Sun ZG, Deng JY, Zhang XE, , 2009. Mutations found in the pncA gene of Mycobacterium tuberculosis in clinical pyrazinamide-resistant isolates from a local region of China. J Int Med Res 37: 14301435.
  25. Zhou A, Nawaz M, Duan Y, , Moore JE, Millar BC, Xu J, Yao Y, 2011. Molecular characterization of isoniazid-resistant Mycobacterium tuberculosis isolates from Xi’an, China. Microb Drug Resist 17: 275281.
  26. Purkan Ihsanawati, , Syah YM, Retnoningrum DS, Noer AS, Shigeoka S, Natalia D, 2012. Novel mutations in katG gene of a clinical isolate of isoniazid-resistant Mycobacterium tuberculosis. Biologia 67: 4147.
  27. Jureen P, Werngren J, Toro JC, Hoffner S, , 2008. Pyrazinamide resistance and pncA gene mutations in Mycobacterium tuberculosis. Antimicrob Agents Chemother 52: 18521854.
  28. Louw GE, Warren RM, Gey van Pittius NC, McEvoy CR, Van Helden PD, Victor TC, , 2009. A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53: 31813189.
  29. Machado D, Perdigao J, Ramos J, , Couto I, Portugal I, Ritter C, Boettger EC, Viveiros M, 2013. High-level resistance to isoniazid and ethionamide in multidrug-resistant Mycobacterium tuberculosis of the Lisboa family is associated with inhA double mutations. J Antimicrob Chemother 68: 17281732.
  30. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, , 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 27312739.
  31. Kimura M, , 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111120.
  32. Rolain JM, Raoult D, , 2005. Genome comparison analysis of molecular mechanisms of resistance to antibiotics in the Rickettsia genus. Ann N Y Acad Sci 1063: 222230.
  33. McDonough JA, Hacker KE, Flores AR, Pavelka MS, Jr Braunstein M, , 2005. The twin-arginine translocation pathway of Mycobacterium smegmatis is functional and required for the export of mycobacterial beta-lactamases. J Bacteriol 187: 76677679.
  34. Elbourne LD, Hall RM, , 2006. Gene cassette encoding a 3-N-aminoglycoside acetyltransferase in a chromosomal integron. Antimicrob Agents Chemother 50: 22702271.
  35. Schmalstieg AM, Srivastava S, Belkaya S, , Deshpande D, Meek C, Leff R, van Oers NS, Gumbo T, 2012. The antibiotic resistance arrow of time: efflux pump induction is a general first step in the evolution of mycobacterial drug resistance. Antimicrob Agents Chemother 56: 48064815.
  36. Buriankova K, Doucet-Populaire F, Dorson O, , Gondran A, Ghnassia JC, Weiser J, Pernodet JL, 2004. Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 48: 143150.
  37. Zheng J, , et al., 2013. Para-aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J Biol Chem 288: 2344723456.
  38. Biswas S, Raoult D, Rolain JM, , 2009. Molecular characterisation of resistance to rifampin in Bartonella quintana. Clin Microbiol Infect 15 (Suppl 2): 100101.
  39. Biswas S, Rolain JM, , 2010. Bartonella infection: treatment and drug resistance. Future Microbiol 5: 17191731.
  40. Boulos A, Rolain JM, Mallet MN, Raoult D, , 2005. Molecular evaluation of antibiotic susceptibility of Tropheryma whipplei in axenic medium. J Antimicrob Chemother 55: 178181.
  41. Jansson M, , et al., 2014. Comparison of two assays for molecular determination of rifampin resistance in clinical samples from patients with Buruli ulcer disease. J Clin Microbiol 52: 12461249.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.16-0478
Loading
/content/journals/10.4269/ajtmh.16-0478
Loading

Data & Media loading...

Supplementary Data

Supplemental Figure and Table

  • Received : 14 Jun 2016
  • Accepted : 06 Apr 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error