Volume 96, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is the causative agent of melioidosis, a severe infection endemic to many tropical regions. Lipopolysaccharide (LPS) is recognized as an important virulence factor used by . Isolates of have been shown to express one of four different types of LPS (typical LPS, atypical LPS types B and B2, and rough LPS) and in vitro studies have demonstrated that LPS types may impact disease severity. The association between LPS types and clinical manifestations, however, is still unknown, in part because an effective method for LPS type identification is not available. Thus, we developed antigen capture immunoassays capable of distinguishing between the LPS types. Mice were injected with B or B2 LPS for atypical LPS–specific monoclonal antibody (mAb) isolation; only two mAbs (3A2 and 5B4) were isolated from mice immunized with B2 LPS. Immunoblot analysis and surface plasmon resonance demonstrated that 3A2 and 5B4 are reactive with both B2 and B LPS where 3A2 was shown to possess higher affinity. Assays were then developed using capsular polysaccharide–specific mAb 4C4 for bacterial capture and 4C7 (previously shown to bind typical LPS) or 3A2 mAbs for typical or atypical LPS strain detection, respectively. The evaluations performed with 197 strains of and non- species showed that the assays are reactive to and strains and have an accuracy of 98.8% (zero false positives and two false negatives) for LPS typing. The results suggest that the assays are effective and applicable for LPS typing.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Wiersinga WJ, van der Poll T, White NJ, Day NP, Peacock SJ, , 2006. Melioidosis: insights into the pathogenicity of Burkholderia pseudomallei . Nat Rev Microbiol 4: 272282.[Crossref] [Google Scholar]
  2. Limmathurotsakul D, Golding N, Dance DAB, Messina JP, Pigott DM, Moyes CL, Rolim DB, Bertherat E, Day NPJ, Peacock SJ, Hay SI, , 2016. Predicted global distribution of Burkholderia pseudomallei and burden of melioidosis. Nat Microbiol 1: 15008.[Crossref] [Google Scholar]
  3. Dance DAB, , 2000. Melioidosis as an emerging global problem. Acta Trop 74: 115119.[Crossref] [Google Scholar]
  4. Foong YC, Tan M, Bradbury RS, , 2014. Melioidosis: a review. Rural Remote Health 14: e2763. [Google Scholar]
  5. Nasner-Posso KM, Cruz-Calderón S, Montúfar-Andrade FE, Dance DAB, Rodriguez-Morales AJ, , 2015. Human melioidosis reported by ProMED. Int J Infect Dis 35: 103106.[Crossref] [Google Scholar]
  6. Butler D, , 2012. Viral research faces clampdown. Nature 490: 456.[Crossref] [Google Scholar]
  7. Rotz LD, Khan AS, Lillibridge SR, Ostroff SM, Hughes JM, , 2002. Public health assessment of potential biological terrorism agents. Emerg Infect Dis 8: 225230.[Crossref] [Google Scholar]
  8. Peacock SJ, , 2006. Melioidosis. Curr Opin Infect Dis 19: 421428.[Crossref] [Google Scholar]
  9. Hoffmaster AR, AuCoin D, Baccam P, Baggett HC, Baird R, Bhengsri S, Blaney DD, Brett PJ, Brooks TJG, Brown KA, Chantratita N, Cheng AC, Dance DAB, Decuypere S, Defenbaugh D, Gee JE, Houghton R, Jorakate P, Lertmemongkolchai G, Limmathurotsakul D, Merlin TL, Mukhopadhyay C, Norton R, Peacock SJ, Rolim DB, Simpson AJ, Steinmetz I, Stoddard RA, Stokes MM, Sue D, Tuanyok A, Whistler T, Wuthiekanun V, Walke HT, , 2015. Melioidosis diagnostic workshop, 2013. Emerg Infect Dis 21: e141045.[Crossref] [Google Scholar]
  10. Hatcher CL, Muruato LA, Torres AG, , 2015. Recent advances in Burkholderia mallei and B. pseudomallei research. Curr Trop Med Rep 2: 6269.[Crossref] [Google Scholar]
  11. Stone JK, DeShazer D, Brett PJ, Burtnick MN, , 2014. Melioidosis: molecular aspects of pathogenesis. Expert Rev Anti Infect Ther 12: 14871499.[Crossref] [Google Scholar]
  12. Arjcharoen S, Wikraiphat C, Pudla M, Limposuwan K, Woods DE, Sirisinha S, Utaisincharoen P, , 2007. Fate of a Burkholderia pseudomallei lipopolysaccharide mutant in the mouse macrophage cell line RAW 264.7: possible role for the O-antigenic polysaccharide moiety of lipopolysaccharide in internalization and intracellular survival. Infect Immun 75: 42984304.[Crossref] [Google Scholar]
  13. AuCoin DP, Reed DE, Marlenee NL, Bowen RA, Thorkildson P, Judy BM, Torres AG, Kozel TR, , 2012. Polysaccharide specific monoclonal antibodies provide passive protection against intranasal challenge with Burkholderia pseudomallei . PLoS One 7: e35386.[Crossref] [Google Scholar]
  14. Ngugi SA, Ventura VV, Qazi O, Harding SV, Kitto GB, Estes DM, Dell A, Titball RW, Atkins TP, Brown KA, Hitchen PG, Prior JL, , 2010. Lipopolysaccharide from Burkholderia thailandensis E264 provides protection in a murine model of melioidosis. Vaccine 28: 75517555.[Crossref] [Google Scholar]
  15. Peacock SJ, Limmathurotsakul D, Lubell Y, Koh GCKW, White LJ, Day NPJ, Titball RW, , 2012. Melioidosis vaccines : a systematic review and appraisal of the potential to exploit biodefense vaccines for public health purposes. PLoS Negl Trop Dis 6: e1488.[Crossref] [Google Scholar]
  16. Nelson M, Prior JL, Lever MS, Jones HE, Atkins TP, Titball RW, , 2004. Evaluation of lipopolysaccharide and capsular polysaccharide as subunit vaccines against experimental melioidosis. J Med Microbiol 53: 11771182.[Crossref] [Google Scholar]
  17. Scott AE, Ngugi SA, Laws TR, Corser D, Lonsdale CL, D'Elia RV, Titball RW, Wiliamson ED, Atkins TP, Prior JL, , 2014. Protection against experimental melioidosis following immunisation with a lipopolysaccharide-protein conjugate. J Immunol Res 2014: 392170.[Crossref] [Google Scholar]
  18. Anuntagool N, Aramsri P, Panichakul T, Wuthiekanun VR, Kinoshita R, White NJ, Sirisinha S, , 2000. Antigenic heterogeneity of lipopolysaccharide among Burkholderia pseudomallei clinical isolates. Southeast Asian J Trop Med Public Health 31: 146152. [Google Scholar]
  19. Tuanyok A, Stone JK, Mayo M, Kaestli M, Gruendike J, Georgia S, Warrington S, Mullins T, Allender CJ, Wagner DM, Chantratita N, Peacock SJ, Currie BJ, Keim P, , 2012. The genetic and molecular basis of O-antigenic diversity in Burkholderia pseudomallei lipopolysaccharide. PLoS Negl Trop Dis 6: e1453.[Crossref] [Google Scholar]
  20. Anuntagool N, Wuthiekanun V, White NJ, Currie BJ, Sermswan RW, Wongratanacheewin S, Taweechaisupapong S, Chaiyaroj SC, Sirisinha S, , 2006. Short report: lipopolysaccharide heterogeneity among Burkholderia pseudomallei from different geographic and clinical origins. Am J Trop Med Hyg 74: 348352. [Google Scholar]
  21. Sorenson AE, Williams NL, Morris JL, Ketheesan N, Norton RE, Schaeffer PM, , 2013. Improved diagnosis of melioidosis using a 2-dimensional immunoarray. Diagn Microbiol Infect Dis 77: 209215.[Crossref] [Google Scholar]
  22. Currie BJ, Dance DAB, Cheng AC, , 2008. The global distribution of Burkholderia pseudomallei and melioidosis: an update. Trans R Soc Trop Med Hyg 102 (Suppl 1): S1S4.[Crossref] [Google Scholar]
  23. Stone JK, Mayo M, Grasso SA, Ginther JL, Warrington SD, Allender CJ, Doyle A, Georgia S, Kaestli M, Broomall SM, Karavis MA, Insalaco JM, Hubbard KS, McNew LA, Gibbons HS, Currie BJ, Keim P, Tuanyok A, , 2012. Detection of Burkholderia pseudomallei O-antigen serotypes in near-neighbor species. BMC Microbiol 12: 250.[Crossref] [Google Scholar]
  24. Novem V, Shui G, Wang D, Bendt AK, Sim SH, Liu Y, Thong TW, Sivalingam SP, Ooi EE, Wenk MR, Tan G, , 2009. Structural and biological diversity of lipopolysaccharides from Burkholderia pseudomallei and Burkholderia thailandensis . Clin Vaccine Immunol 16: 14201428.[Crossref] [Google Scholar]
  25. Heiss C, Burtnick MN, Roberts RA, Black I, Azadi P, Brett PJ, , 2013. Revised structures for the predominant O-polysaccharides expressed by Burkholderia pseudomallei and Burkholderia mallei . Carbohydr Res 381: 611.[Crossref] [Google Scholar]
  26. Brett PJ, DeShazer D, Woods DE, , 1998. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48: 317320.[Crossref] [Google Scholar]
  27. Darling P, Chan M, Cox AD, Sokol PA, , 1998. Siderophore production by cystic fibrosis isolates of Burkholderia cepacia . Infect Immun 66: 874877. [Google Scholar]
  28. Perry MB, MacLean LL, Schollaardt T, Bryan LE, Ho M, , 1995. Structural characterization of the lipopolysaccharide O antigens of Burkholderia pseudomallei . Infect Immun 63: 33483352. [Google Scholar]
  29. Burtnick MN, Heiss C, Schuler AM, Azadi P, Brett PJ, , 2012. Development of novel O-polysaccharide based glycoconjugates for immunization against glanders. Front Cell Infect Microbiol 2: 148. [Google Scholar]
  30. Kozel TR, Murphy WJ, Brandt S, Blazar BR, Lovchik JA, Thorkildson P, Percival A, Lyons CR, , 2004. mAbs to Bacillus anthracis capsular antigen for immunoprotection in anthrax and detection of antigenemia. Proc Natl Acad Sci USA 101: 50425047.[Crossref] [Google Scholar]
  31. Nuti DE, Crump RB, Dwi Handayani F, Chantratita N, Peacock SJ, Bowen R, Felgner PL, Davies DH, Wu T, Lyons CR, Brett PJ, Burtnick MN, Kozel TR, AuCoin DP, , 2011. Identification of circulating bacterial antigens by in vivo microbial antigen discovery. mBio 2: e00136-11.[Crossref] [Google Scholar]
  32. Marchetti R, Dillon MJ, Burtnick MN, Hubbard MA, Kenfack MT, Blériot Y, Gauthier C, Brett PJ, AuCoin DP, Lanzetta R, Silipo A, Molinaro A, , 2015. Burkholderia pseudomallei capsular polysaccharide recognition by a monoclonal antibody reveals key details toward a biodefense vaccine and diagnostics against melioidosis. ACS Chem Biol 10: 22952302.[Crossref] [Google Scholar]
  33. Houghton RL, Reed DE, Hubbard MA, Dillon MJ, Chen H, Currie BJ, Mayo M, Sarovich DS, Theobald V, Limmathurotsakul D, Wongsuvan G, Chantratita N, Peacock SJ, Hoffmaster AR, Duval B, Brett PJ, Burtnick MN, Aucoin DP, , 2014. Development of a prototype lateral flow immunoassay (LFI) for the rapid diagnosis of melioidosis. PLoS Negl Trop Dis 8: e2727.[Crossref] [Google Scholar]
  34. Burtnick MN, Brett PJ, Woods DE, , 2002. Molecular and physical characterization of Burkholderia mallei O antigens. J Bacteriol 184: 849852.[Crossref] [Google Scholar]
  35. Hansburg D, Briles DE, Davie JM, , 1976. Analysis of the diversity of murine antibodies to dextran B1355. I. Generation of a larger, pauci-clonal response by a bacterial vaccine. J Immunol 117: 569575. [Google Scholar]
  36. Sarkar-Tyson M, Thwaite JE, Harding SV, Smither SJ, Oyston PCF, Atkins TP, Titball RW, , 2007. Polysaccharides and virulence of Burkholderia pseudomallei . J Med Microbiol 56: 10051010.[Crossref] [Google Scholar]
  37. Burtnick MN, Heiss C, Roberts RA, Schweizer HP, Azadi P, Brett PJ, , 2012. Development of capsular polysaccharide-based glycoconjugates for immunization against melioidosis and glanders. Front Cell Infect Microbiol 2: 108. [Google Scholar]
  38. Sim BMQ, Chantratita N, Ooi WF, Nandi T, Tewhey R, Wuthiekanun V, Thaipadungpanit J, Tumapa S, Ariyaratne P, Sung W-K, Sem XH, Chua HH, Ramnarayanan K, Lin CH, Liu Y, Feil EJ, Glass MB, Tan G, Peacock SJ, Tan P, , 2010. Genomic acquisition of a capsular polysaccharide virulence cluster by non-pathogenic Burkholderia isolates. Genome Biol 11: R89.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 18 Apr 2016
  • Accepted : 27 Oct 2016
  • Published online : 08 Feb 2017

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error