Volume 95, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Historically, the diagnosis of soil-transmitted helminths (STHs) (e.g., , , , , and ) has relied on often-insensitive microscopy techniques. Over the past several years, there has been an effort to use molecular diagnostics, particularly quantitative polymerase chain reaction (qPCR), to detect intestinal pathogens. While some platforms have been approved by regulatory bodies (e.g., Food and Drug Administration) to detect intestinal bacteria, viruses, and protozoa, there are no approved tests currently available for STH. Although studies comparing qPCR to microscopy methods for STH are imperfect, due in large part to a lack of a sufficient gold standard, they do show a significant increase in sensitivity and specificity of qPCR compared with microscopic techniques. These studies, as well as the advantages and disadvantages of using qPCR for STH diagnosis, are discussed. Guidelines for those designing future studies utilizing qPCR are proposed for optimizing results, as is the proposition for using standardized molecular diagnostics routinely for STH in clinical laboratories and for field-based studies when possible.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO Holmes P, , 2015. Investing to Overcome the Global Impact of Neglected Tropical Diseases: Third WHO Report on Neglected Tropical Diseases 2015. , ed. Geneva, Switzerland: World Health Organization, 161167. [Google Scholar]
  2. Keiser PB, Nutman TB, , 2004. Strongyloides stercoralis in the immunocompromised population. Clin Microbiol Rev 17: 208217.[Crossref] [Google Scholar]
  3. Gill GV, Welch E, Bailey JW, Bell DR, Beeching NJ, , 2004. Chronic Strongyloides stercoralis infection in former British Far East prisoners of war. QJM 97: 789795.[Crossref] [Google Scholar]
  4. Schulte C, Krebs B, Jelinek T, Nothdurft HD, von Sonnenburg F, Loscher T, , 2002. Diagnostic significance of blood eosinophilia in returning travelers. Clin Infect Dis 34: 407411.[Crossref] [Google Scholar]
  5. Naidu P, Yanow SK, Kowalewska-Grochowska KT, , 2013. Eosinophilia: a poor predictor of Strongyloides infection in refugees. Can J Infect Dis Med Microbiol 24: 9396. [Google Scholar]
  6. Calderaro A, Montecchini S, Rossi S, Gorrini C, De Conto F, Medici MC, Chezzi C, Arcangeletti MC, , 2014. Intestinal parasitoses in a tertiary-care hospital located in a non-endemic setting during 2006–2010. BMC Infect Dis 14: 264.[Crossref] [Google Scholar]
  7. Becker SL, Sieto B, Silue KD, Adjossan L, Kone S, Hatz C, Kern WV, N'Goran EK, Utzinger J, , 2011. Diagnosis, clinical features, and self-reported morbidity of Strongyloides stercoralis and hookworm infection in a co-endemic setting. PLoS Negl Trop Dis 5: e1292.[Crossref] [Google Scholar]
  8. O'Brien DP, Leder K, Matchett E, Brown GV, Torresi J, , 2006. Illness in returned travelers and immigrants/refugees: the 6-year experience of two Australian infectious diseases units. J Travel Med 13: 145152.[Crossref] [Google Scholar]
  9. Schar F, Hattendorf J, Khieu V, Muth S, Char MC, Marti HP, Odermatt P, , 2014. Strongyloides stercoralis larvae excretion patterns before and after treatment. Parasitology 141: 892897.[Crossref] [Google Scholar]
  10. Ramanathan R, Burbelo P, Groot S, Iadarola M, Neva F, Nutman T, , 2008. A luciferase immunoprecipitation systems assay enhances the sensitivity and specificity of diagnosis of Strongyloides stercoralis infection. J Infect Dis 198: 444451.[Crossref] [Google Scholar]
  11. Soonawala D, van Lieshout L, den Boer MA, Claas EC, Verweij JJ, Godkewitsch A, Ratering M, Visser LG, , 2014. Post-travel screening of asymptomatic long-term travelers to the tropics for intestinal parasites using molecular diagnostics. Am J Trop Med Hyg 90: 835839.[Crossref] [Google Scholar]
  12. ten Hove RJ, van Esbroeck M, Vervoort T, van den Ende J, van Lieshout L, Verweij JJ, , 2009. Molecular diagnostics of intestinal parasites in returning travellers. Eur J Clin Microbiol Infect Dis 28: 10451053.[Crossref] [Google Scholar]
  13. Buss SN, Leber A, Chapin K, Fey PD, Bankowski MJ, Jones MK, Rogatcheva M, Kanack KJ, Bourzac KM, , 2015. Multicenter evaluation of the BioFire FilmArray gastrointestinal panel for etiologic diagnosis of infectious gastroenteritis. J Clin Microbiol 53: 915925.[Crossref] [Google Scholar]
  14. Reddington K, Tuite N, Minogue E, Barry T, , 2014. A current overview of commercially available nucleic acid diagnostics approaches to detect and identify human gastroenteritis pathogens. Biomol Detect Quantif 1: 37.[Crossref] [Google Scholar]
  15. Sleigh A, Hoff R, Mott K, Barreto M, de Paiva TM, Pedrosa J de S, Sherlock I, , 1982. Comparison of filtration staining (Bell) and thick smear (Kato) for the detection and quantitation of Schistosoma mansoni eggs in faeces. Trans R Soc Trop Med Hyg 76: 403405.[Crossref] [Google Scholar]
  16. WHO, 2015. Assessing the Epidemiology of Soil-Transmitted Helminths During a Transmission Assessment Survey in the Global Programme for the Elimination of Lymphatic Filariasis. Geneva, Switzerland: WHO Press. [Google Scholar]
  17. van Mens SP, Aryeetey Y, Yazdanbakhsh M, van Lieshout L, Boakye D, Verweij JJ, , 2013. Comparison of real-time PCR and Kato smear microscopy for the detection of hookworm infections in three consecutive faecal samples from schoolchildren in Ghana. Trans R Soc Trop Med Hyg 107: 269271.[Crossref] [Google Scholar]
  18. Odongo-Aginya EI, Kabatereine N, Ludwig S, Wabinga H, Fenwick A, Montresor A, , 2007. Substitution of malachite green with nigrosin–eosin yellow stain in the Kato-Katz method: microscopical appearance of the helminth eggs. Afr J Health Sci 7: 3336. [Google Scholar]
  19. Mejia R, Vicuna Y, Broncano N, Sandoval C, Vaca M, Chico M, Cooper PJ, Nutman TB, , 2013. A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. Am J Trop Med Hyg 88: 10411047.[Crossref] [Google Scholar]
  20. Arndt MB, John-Stewart G, Richardson BA, Singa B, van Lieshout L, Verweij JJ, Sangare LR, Mbogo LW, Naulikha JM, Walson JL, , 2013. Impact of helminth diagnostic test performance on estimation of risk factors and outcomes in HIV-positive adults. PLoS One 8: e81915.[Crossref] [Google Scholar]
  21. Easton AV, Oliveira RG, O'Connell EM, Kepha S, Mwandawiro CS, Njenga SM, Kihara JH, Mwatele C, Odiere MR, Brooker SJ, Webster JP, Anderson RM, Nutman TB, , 2016. Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming. Parasit Vectors 9: 38.[Crossref] [Google Scholar]
  22. Pilotte N, Papaiakovou M, Grant JR, Bierwert LA, Llewellyn S, McCarthy JS, Williams SA, , 2016. Improved PCR-based detection of soil transmitted helminth infections using a next-generation sequencing approach to assay design. PLoS Negl Trop Dis 10: e0004578.[Crossref] [Google Scholar]
  23. Knopp S, Salim N, Schindler T, Karagiannis Voules DA, Rothen J, Lweno O, Mohammed AS, Singo R, Benninghoff M, Nsojo AA, Genton B, Daubenberger C, , 2014. Diagnostic accuracy of Kato-Katz, FLOTAC, Baermann, and PCR methods for the detection of light-intensity hookworm and Strongyloides stercoralis infections in Tanzania. Am J Trop Med Hyg 90: 535545.[Crossref] [Google Scholar]
  24. Verweij JJ, Brienen EA, Ziem J, Yelifari L, Polderman AM, Van Lieshout L, , 2007. Simultaneous detection and quantification of Ancylostoma duodenale, Necator americanus, and Oesophagostomum bifurcum in fecal samples using multiplex real-time PCR. Am J Trop Med Hyg 77: 685690. [Google Scholar]
  25. Nilforoushan M, Mirhendi H, Rezaie S, Rezaian M, Meamar A, Kia EB, , 2007. A DNA-based identification of Strongyloides stercoralis isolates from Iran. Iran J Public Health 36: 1620. [Google Scholar]
  26. Verweij JJ, Canales M, Polman K, Ziem J, Brienen EA, Polderman AM, van Lieshout L, , 2009. Molecular diagnosis of Strongyloides stercoralis in faecal samples using real-time PCR. Trans R Soc Trop Med Hyg 103: 342346.[Crossref] [Google Scholar]
  27. Sharifdini M, Mirhendi H, Ashrafi K, Hosseini M, Mohebali M, Khodadadi H, Kia EB, , 2015. Comparison of nested polymerase chain reaction and real-time polymerase chain reaction with parasitological methods for detection of Strongyloides stercoralis in human fecal samples. Am J Trop Med Hyg 93: 12851291.[Crossref] [Google Scholar]
  28. Moghaddassani H, Mirhendi H, Hosseini M, Rokni MB, Mowlavi GH, Kia EB, , 2011. Molecular diagnosis of Strongyloides stercoralis infection by PCR detection of specific DNA in human stool samples. Iran J Parasitol 6: 2330. [Google Scholar]
  29. de Gruijter JM, van Lieshout L, Gasser RB, Verweij JJ, Brienen EA, Ziem JB, Yelifari L, Polderman AM, , 2005. Polymerase chain reaction-based differential diagnosis of Ancylostoma duodenale and Necator americanus infections in humans in northern Ghana. Trop Med Int Health 10: 574580.[Crossref] [Google Scholar]
  30. Traub RJ, Inpankaew T, Sutthikornchai C, Sukthana Y, Thompson RC, , 2008. PCR-based coprodiagnostic tools reveal dogs as reservoirs of zoonotic ancylostomiasis caused by Ancylostoma ceylanicum in temple communities in Bangkok. Vet Parasitol 155: 6773.[Crossref] [Google Scholar]
  31. Gasser RB, Stewart LE, Speare R, , 1996. Genetic markers in ribosomal DNA for hookworm identification. Acta Trop 62: 1521.[Crossref] [Google Scholar]
  32. Zhan B, Li T, Xiao S, Zheng F, Hawdon JM, , 2001. Species-specific identification of human hookworms by PCR of the mitochondrial cytochrome oxidase I gene. J Parasitol 87: 12271229.[Crossref] [Google Scholar]
  33. Pecson BM, Barrios JA, Johnson DR, Nelson KL, , 2006. A real-time PCR method for quantifying viable Ascaris eggs using the first internally transcribed spacer region of ribosomal DNA. Appl Environ Microbiol 72: 78647872.[Crossref] [Google Scholar]
  34. Wiria AE, Prasetyani MA, Hamid F, Wammes LJ, Lell B, Ariawan I, Uh HW, Wibowo H, Djuardi Y, Wahyuni S, Sutanto I, May L, Luty AJ, Verweij JJ, Sartono E, Yazdanbakhsh M, Supali T, , 2010. Does treatment of intestinal helminth infections influence malaria? Background and methodology of a longitudinal study of clinical, parasitological and immunological parameters in Nangapanda, Flores, Indonesia (ImmunoSPIN Study). BMC Infect Dis 10: 77.[Crossref] [Google Scholar]
  35. Loreille O, Roumat E, Verneau O, Bouchet F, Hanni C, , 2001. Ancient DNA from Ascaris: extraction amplification and sequences from eggs collected in coprolites. Int J Parasitol 31: 11011106.[Crossref] [Google Scholar]
  36. Wang JX, Pan CS, Cui LW, , 2012. Application of a real-time PCR method for detecting and monitoring hookworm Necator americanus infections in southern China. Asian Pac J Trop Biomed 2: 925929.[Crossref] [Google Scholar]
  37. Verweij JJ, Pit DS, van Lieshout L, Baeta SM, Dery GD, Gasser RB, Polderman AM, , 2001. Determining the prevalence of Oesophagostomum bifurcum and Necator americanus infections using specific PCR amplification of DNA from faecal samples. Trop Med Int Health 6: 726731.[Crossref] [Google Scholar]
  38. Romstad A, Gasser RB, Monti JR, Polderman AM, Nansen P, Pit DS, Chilton NB, , 1997. Differentiation of Oesophagostomum bifurcum from Necator americanus by PCR using genetic markers in spacer ribosomal DNA. Mol Cell Probes 11: 169176.[Crossref] [Google Scholar]
  39. Romstad A, Gasser RB, Nansen P, Polderman AM, Monti JR, Chilton NB, , 1997. Characterization of Oesophagostomum bifurcum and Necator americanus by PCR-RFLP of rDNA. J Parasitol 83: 963966.[Crossref] [Google Scholar]
  40. Ramachandran S, Gam AA, Neva FA, , 1997. Molecular differences between several species of Strongyloides and comparison of selected isolates of S. stercoralis using a polymerase chain reaction-linked restriction fragment length polymorphism approach. Am J Trop Med Hyg 56: 6165. [Google Scholar]
  41. Nissen S, Al-Jubury A, Hansen TV, Olsen A, Christensen H, Thamsborg SM, Nejsum P, , 2012. Genetic analysis of Trichuris suis and Trichuris trichiura recovered from humans and pigs in a sympatric setting in Uganda. Vet Parasitol 188: 6877.[Crossref] [Google Scholar]
  42. Phuphisut O, Yoonuan T, Sanguankiat S, Chaisiri K, Maipanich W, Pubampen S, Komalamisra C, Adisakwattana P, , 2014. Triplex polymerase chain reaction assay for detection of major soil-transmitted helminths, Ascaris lumbricoides, Trichuris trichiura, Necator americanus, in fecal samples. Southeast Asian J Trop Med Public Health 45: 267275. [Google Scholar]
  43. Llewellyn S, Inpankaew T, Nery SV, Gray DJ, Verweij JJ, Clements AC, Gomes SJ, Traub R, McCarthy JS, , 2016. Application of a multiplex quantitative PCR to assess prevalence and intensity of intestinal parasite infections in a controlled clinical trial. PLoS Negl Trop Dis 10: e0004380.[Crossref] [Google Scholar]
  44. Basuni M, Mohamed Z, Ahmad M, Zakaria NZ, Noordin R, , 2012. Detection of selected intestinal helminths and protozoa at Hospital Universiti Sains Malaysia using multiplex real-time PCR. Trop Biomed 29: 434442. [Google Scholar]
  45. Basuni M, Muhi J, Othman N, Verweij JJ, Ahmad M, Miswan N, Rahumatullah A, Aziz FA, Zainudin NS, Noordin R, , 2011. A pentaplex real-time polymerase chain reaction assay for detection of four species of soil-transmitted helminths. Am J Trop Med Hyg 84: 338343.[Crossref] [Google Scholar]
  46. Yooseph S, Kirkness EF, Tran TM, Harkins DM, Jones MB, Torralba MG, O'Connell E, Nutman TB, Doumbo S, Doumbo OK, Traore B, Crompton PD, Nelson KE, , 2015. Stool microbiota composition is associated with the prospective risk of Plasmodium falciparum infection. BMC Genomics 16: 631.[Crossref] [Google Scholar]
  47. Al-Soud WA, Ouis IS, Li DQ, Ljungh S, Wadstrom T, , 2005. Characterization of the PCR inhibitory effect of bile to optimize real-time PCR detection of Helicobacter species. FEMS Immunol Med Microbiol 44: 177182.[Crossref] [Google Scholar]
  48. Sato M, Sanguankiat S, Yoonuan T, Pongvongsa T, Keomoungkhoun M, Phimmayoi I, Boupa B, Moji K, Waikagul J, , 2010. Copro-molecular identification of infections with hookworm eggs in rural Lao PDR. Trans R Soc Trop Med Hyg 104: 617622.[Crossref] [Google Scholar]
  49. Repetto SA, Alba Soto CD, Cazorla SI, Tayeldin ML, Cuello S, Lasala MB, Tekiel VS, Gonzalez Cappa SM, , 2013. An improved DNA isolation technique for PCR detection of Strongyloides stercoralis in stool samples. Acta Trop 126: 110114.[Crossref] [Google Scholar]
  50. Sultana Y, Jeoffreys N, Watts MR, Gilbert GL, Lee R, , 2013. Real-time polymerase chain reaction for detection of Strongyloides stercoralis in stool. Am J Trop Med Hyg 88: 10481051.[Crossref] [Google Scholar]
  51. Saugar JM, Merino FJ, Martin-Rabadan P, Fernandez-Soto P, Ortega S, Garate T, Rodriguez E, , 2015. Application of real-time PCR for the detection of Strongyloides spp. in clinical samples in a reference center in Spain. Acta Trop 142: 2025.[Crossref] [Google Scholar]
  52. Liu J, Gratz J, Amour C, Kibiki G, Becker S, Janaki L, Verweij JJ, Taniuchi M, Sobuz SU, Haque R, Haverstick DM, Houpt ER, , 2013. A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens. J Clin Microbiol 51: 472480.[Crossref] [Google Scholar]
  53. Taniuchi M, Verweij JJ, Noor Z, Sobuz SU, Lieshout L, Petri WA, Jr Haque R, Houpt ER, , 2011. High throughput multiplex PCR and probe-based detection with Luminex beads for seven intestinal parasites. Am J Trop Med Hyg 84: 332337.[Crossref] [Google Scholar]
  54. Harmon AF, Williams ZB, Holler LD, Hildreth MB, , 2007. Comparison of three different preservatives for morphological and real-time PCR analyses of Haemonchus contortus eggs. Vet Parasitol 145: 361365.[Crossref] [Google Scholar]
  55. Williams RB, Thebo P, Marshall RN, Marshall JA, , 2010. Coccidian oocysts as type-specimens: long-term storage in aqueous potassium dichromate solution preserves DNA. Syst Parasitol 76: 6976.[Crossref] [Google Scholar]
  56. Wilke H, Robertson LJ, , 2009. Preservation of Giardia cysts in stool samples for subsequent PCR analysis. J Microbiol Methods 78: 292296.[Crossref] [Google Scholar]
  57. Kuk S, Yazar S, Cetinkaya U, , 2012. Stool sample storage conditions for the preservation of Giardia intestinalis DNA. Mem Inst Oswaldo Cruz 107: 965968.[Crossref] [Google Scholar]
  58. Halstead FD, Lee AV, Couto-Parada X, Polley SD, Ling C, Jenkins C, Chalmers RM, Elwin K, Gray JJ, Iturriza-Gomara M, Wain J, Clark DA, Bolton FJ, Manuel RJ, Olympics GI Group, , 2013. Universal extraction method for gastrointestinal pathogens. J Med Microbiol 62: 15351539.[Crossref] [Google Scholar]
  59. Leles D, Araujo A, Vicente AC, Iniguez AM, , 2009. Molecular diagnosis of ascariasis from human feces and description of a new Ascaris sp. genotype in Brazil. Vet Parasitol 163: 167170.[Crossref] [Google Scholar]
  60. Harmon AF, Zarlenga DS, Hildreth MB, , 2006. Improved methods for isolating DNA from Ostertagia ostertagi eggs in cattle feces. Vet Parasitol 135: 297302.[Crossref] [Google Scholar]
  61. Schar F, Odermatt P, Khieu V, Panning M, Duong S, Muth S, Marti H, Kramme S, , 2013. Evaluation of real-time PCR for Strongyloides stercoralis and hookworm as diagnostic tool in asymptomatic schoolchildren in Cambodia. Acta Trop 126: 8992.[Crossref] [Google Scholar]
  62. Becker SL, Piraisoody N, Kramme S, Marti H, Silue KD, Panning M, Nickel B, Kern WV, Herrmann M, Hatz CF, N'Goran EK, Utzinger J, von Muller L, , 2015. Real-time PCR for detection of Strongyloides stercoralis in human stool samples from Cote d'Ivoire: diagnostic accuracy, inter-laboratory comparison and patterns of hookworm co-infection. Acta Trop 150: 210217.[Crossref] [Google Scholar]
  63. Cimino RO, Jeun R, Juarez M, Cajal PS, Vargas P, Echazu A, Bryan PE, Nasser J, Krolewiecki A, Mejia R, , 2015. Identification of human intestinal parasites affecting an asymptomatic peri-urban Argentinian population using multi-parallel quantitative real-time polymerase chain reaction. Parasit Vectors 8: 380.[Crossref] [Google Scholar]
  64. Gordon CA, McManus DP, Acosta LP, Olveda RM, Williams GM, Ross AG, Gray DJ, Gobert GN, , 2015. Multiplex real-time PCR monitoring of intestinal helminths in humans reveals widespread polyparasitism in Northern Samar, the Philippines. Int J Parasitol 45: 477483.[Crossref] [Google Scholar]
  65. Hu W, Wu S, Yu X, Abullahi AY, Song M, Tan L, Wang Z, Jiang B, Li G, , 2015. A multiplex PCR for simultaneous detection of three zoonotic parasites Ancylostoma ceylanicum, A. caninum, and Giardia lamblia assemblage A. BioMed Res Int 2015: 406168. [Google Scholar]
  66. Pullan RL, Smith JL, Jasrasaria R, Brooker SJ, , 2014. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010. Parasit Vectors 7: 37.[Crossref] [Google Scholar]
  67. Jonker FA, Calis JC, Phiri K, Brienen EA, Khoffi H, Brabin BJ, Verweij JJ, van Hensbroek MB, van Lieshout L, , 2012. Real-time PCR demonstrates Ancylostoma duodenale is a key factor in the etiology of severe anemia and iron deficiency in Malawian pre-school children. PLoS Negl Trop Dis 6: e1555.[Crossref] [Google Scholar]
  68. Getachew M, Yewhalaw D, Tafess K, Getachew Y, Zeynudin A, , 2012. Anaemia and associated risk factors among pregnant women in Gilgel Gibe dam area, southwest Ethiopia. Parasit Vectors 5: 296.[Crossref] [Google Scholar]
  69. Gyorkos TW, Gilbert NL, Larocque R, Casapia M, Montresor A, , 2012. Re-visiting Trichuris trichiura intensity thresholds based on anemia during pregnancy. PLoS Negl Trop Dis 6: e1783.[Crossref] [Google Scholar]
  70. Ngui R, Lim YA, Chong Kin L, Sek Chuen C, Jaffar S, , 2012. Association between anaemia, iron deficiency anaemia, neglected parasitic infections and socioeconomic factors in rural children of west Malaysia. PLoS Negl Trop Dis 6: e1550.[Crossref] [Google Scholar]
  71. Demeler J, Kruger N, Krucken J, von der Heyden VC, Ramunke S, Kuttler U, Miltsch S, Lopez Cepeda M, Knox M, Vercruysse J, Geldhof P, Harder A, von Samson-Himmelstjerna G, , 2013. Phylogenetic characterization of β-tubulins and development of pyrosequencing assays for benzimidazole resistance in cattle nematodes. PLoS One 8: e70212.[Crossref] [Google Scholar]
  72. Areekul P, Putaporntip C, Pattanawong U, Sitthicharoenchai P, Jongwutiwes S, , 2010. Trichuris vulpis and T. trichiura infections among schoolchildren of a rural community in northwestern Thailand: the possible role of dogs in disease transmission. Asian Biomed 4: 4960. [Google Scholar]
  73. Ahmad AF, Hadip F, Ngui R, Lim YA, Mahmud R, , 2013. Serological and molecular detection of Strongyloides stercoralis infection among an Orang Asli community in Malaysia. Parasitol Res 112: 28112816.[Crossref] [Google Scholar]
  74. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ, , 1990. Basic local alignment search tool. J Mol Biol 215: 403410.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 05 Apr 2016
  • Accepted : 29 Jun 2016
  • Published online : 07 Sep 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error