Volume 95, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



In September 2015, the National Institute of Allergy and Infectious Diseases organized a workshop to address the roles of vaccines in achieving regional and global goals for visceral leishmaniasis (VL) control and elimination, a critical step in determining desired product characteristics as well as research and development needs and opportunities. Although current regional programs and strategies are making progress to control and perhaps eliminate the disease in some endemic areas, such as India, Bangladesh, and Nepal, workshop participants concluded that vaccines would still be necessary to sustain elimination efforts and ultimately block and reduce transmission. In addition, vaccines would be valuable and even critical tools for other areas of the world, such as east Africa, where treatment options are more limited and control programs for VL are less effective. Because different disease foci present different epidemiological features, product characteristics should be carefully designed to reflect vaccines that either target common antigens for all forms of VL or are tailored to fit regional needs.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Hotez PJ, Alvarado M, Basáñez MG, Bolliger I, Bourne R, Boussinesq M, Brooker SJ, Brown AS, Buckle G, Budke CM, Carabin H, Coffeng LE, Fèvre EM, Fürst T, Halasa YA, Jasrasaria R, Johns NE, Keiser J, King CH, Lozano R, Murdoch ME, O'Hanlon S, Pion SD, Pullan RL, Ramaiah KD, Roberts T, Shepard DS, Smith JL, Stolk WA, Undurraga EA, Utzinger J, Wang M, Murray CJ, Naghavi M, , 2014. The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis 8: e2865.[Crossref] [Google Scholar]
  2. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, WHO Leishmaniasis Control Team, , 2012. Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7: e35671.[Crossref] [Google Scholar]
  3. World Health Organization, 2015. Kala-Azar Elimination Programme: Report of a WHO Consultation of Partners. Geneva, Switzerland: World Health Organization. [Google Scholar]
  4. WHO Regional Office for South-East Asia, 2012. Regional Strategic Framework for Elimination of Kala-Azar from the South-East Asia Region, 2011–2015. Geneva, Switzerland: World Health Organization. [Google Scholar]
  5. Hasker E, Malaviya P, Gidwani K, Picado A, Ostyn B, Kansal S, Singh RP, Singh OP, Chourasia A, Kumar Singh A, Shankar R, Wilson ME, Khanal B, Rijal S, Boelaert M, Sundar S, , 2014. Strong association between serological status and probability of progression to clinical visceral leishmaniasis in prospective cohort studies in India and Nepal. PLoS Negl Trop Dis 8: e2657.[Crossref] [Google Scholar]
  6. Bualert L, Charungkiattikul W, Thongsuksai P, Mungthin M, Siripattanapipong S, Khositnithikul R, Naaglor T, Ravel C, El Baidouri F, Leelayoova S, , 2012. Autochthonous disseminated dermal and visceral leishmaniasis in an AIDS patient, southern Thailand, caused by Leishmania siamensis . Am J Trop Med Hyg 86: 821824.[Crossref] [Google Scholar]
  7. Weirather JL, Jeronimo SM, Gautam S, Sundar S, Kang M, Kurtz MA, Haque R, Schriefer A, Talhari S, Carvalho EM, Donelson JE, Wilson ME, , 2011. Serial quantitative PCR assay for detection, species discrimination, and quantification of Leishmania spp. in human samples. J Clin Microbiol 49: 38923904.[Crossref] [Google Scholar]
  8. Rijal S, Ostyn B, Uranw S, Rai K, Bhattarai NR, Dorlo TP, Beijnen JH, Vanaerschot M, Decuypere S, Dhakal SS, Das ML, Karki P, Singh R, Boelaert M, Dujardin JC, , 2013. Increasing failure of miltefosine in the treatment of kala-azar in Nepal and the potential role of parasite drug resistance, reinfection, or noncompliance. Clin Infect Dis 56: 15301538.[Crossref] [Google Scholar]
  9. Sundar S, Chakravarty J, , 2010. Antimony toxicity. Int J Environ Res Public Health 7: 42674277.[Crossref] [Google Scholar]
  10. Sundar S, Sinha PK, Rai M, Verma DK, Nawin K, Alam S, Chakravarty J, Vaillant M, Verma N, Pandey K, Kumari P, Lal CS, Arora R, Sharma B, Ellis S, Strub-Wourgaft N, Balasegaram M, Olliaro P, Das P, Modabber F, , 2011. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet 377: 477486.[Crossref] [Google Scholar]
  11. Melaku Y, Collin SM, Keus K, Gatluak F, Ritmeijer K, Davidson RN, , 2007. Treatment of kala-azar in southern Sudan using a 17-day regimen of sodium stibogluconate combined with paromomycin: a retrospective comparison with 30-day sodium stibogluconate monotherapy. Am J Trop Med Hyg 77: 8994. [Google Scholar]
  12. Musa A, Khalil E, Hailu A, Olobo J, Balasegaram M, Omollo R, Edwards T, Rashid J, Mbui J, Musa B, Abuzaid AA, Ahmed O, Fadlalla A, El-Hassan A, Mueller M, Mucee G, Njoroge S, Manduku V, Mutuma G, Apadet L, Lodenyo H, Mutea D, Kirigi G, Yifru S, Mengistu G, Hurissa Z, Hailu W, Weldegebreal T, Tafes H, Mekonnen Y, Makonnen E, Ndegwa S, Sagaki P, Kimutai R, Kesusu J, Owiti R, Ellis S, Wasunna M, , 2012. Sodium stibogluconate (SSG) and paromomycin combination compared to SSG for visceral leishmaniasis in east Africa: a randomised controlled trial. PLoS Negl Trop Dis 6: e1674.[Crossref] [Google Scholar]
  13. Coleman M, Foster GM, Deb R, Pratap Singh R, Ismail HM, Shivam P, Ghosh AK, Dunkley S, Kumar V, Coleman M, Hemingway J, Paine MJ, Das P, , 2015. DDT-based indoor residual spraying suboptimal for visceral leishmaniasis elimination in India. Proc Natl Acad Sci USA 112: 85738578.[Crossref] [Google Scholar]
  14. Hurwitz I, Hillesland H, Fieck A, Das P, Durvasula R, , 2011. The paratransgenic sand fly: a platform for control of Leishmania transmission. Parasit Vectors 4: 82.[Crossref] [Google Scholar]
  15. Khalil EA, Musa AM, Modabber F, El-Hassan AM, , 2006. Safety and immunogenicity of a candidate vaccine for visceral leishmaniasis (alum-precipitated autoclaved Leishmania major + BCG) in children: an extended phase II study. Ann Trop Paediatr 26: 357361.[Crossref] [Google Scholar]
  16. Musa AM, Khalil EA, Mahgoub FA, Elgawi SH, Modabber F, Elkadaru AE, Aboud MH, Noazin S, Ghalib HW, El-Hassan AM, Leishmaniasis Research Group/Sudan; , 2008. Immunochemotherapy of persistent post-kala-azar dermal leishmaniasis: a novel approach to treatment. Trans R Soc Trop Med Hyg 102: 5863.[Crossref] [Google Scholar]
  17. Gautam S, Kumar R, Maurya R, Nylén S, Ansari N, Rai M, Sundar S, Sacks D, , 2011. IL-10 neutralization promotes parasite clearance in splenic aspirate cells from patients with visceral leishmaniasis. J Infect Dis 204: 11341137.[Crossref] [Google Scholar]
  18. Nylén S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, Sacks DS, , 2007. Plenic accumulation of IL-10 mRNA in T cells distinct from CD4 + CD25 + (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204: 805817.[Crossref] [Google Scholar]
  19. LeishGEN Consortium; Wellcome Trust Case Control Consortium 2 Fakiola M, Strange A, Cordell HJ, Miller EN, Pirinen M, Su Z, Mishra A, Mehrotra S, Monteiro GR, Band G, Bellenguez C, Dronov S, Edkins S, Freeman C, Giannoulatou E, Gray E, Hunt SE, Lacerda HG, Langford C, Pearson R, Pontes NN, Rai M, Singh SP, Smith L, Sousa O, Vukcevic D, Bramon E, Brown MA, Casas JP, Corvin A, Duncanson A, Jankowski J, Markus HS, Mathew CG, Palmer CN, Plomin R, Rautanen A, Sawcer SJ, Trembath RC, Viswanathan AC, Wood NW, Wilson ME, Deloukas P, Peltonen L, Christiansen F, Witt C, Jeronimo SM, Sundar S, Spencer CC, Blackwell JM, Donnelly P, , , 2013. Common variants in the HLA-DRB1-HLA-DQA1 HLA class II region are associated with susceptibility to visceral leishmaniasis. Nat Genet 45: 208213.[Crossref] [Google Scholar]
  20. Coler RN, Duthie MS, Hofmeyer KA, Guderian J, Jayashankar L, Vergara J, Rolf T, Misquith A, Laurance JD, Raman VS, Bailor HR, Cauwelaert ND, Reed SJ, Vallur A, Favila M, Orr MT, Ashman J, Ghosh P, Mondal D, Reed SG, , 2015. From mouse to man: safety, immunogenicity and efficacy of a candidate leishmaniasis vaccine LEISH-F3 + GLA-SE. Clin Transl Immunology 4: e35.[Crossref] [Google Scholar]
  21. Das S, Freier A, Boussoffara T, Das S, Oswald D, Losch FO, Selka M, Sacerdoti-Sierra N, Schönian G, Wiesmüller KH, Seifert K, Schroff M, Juhls C, Jaffe CL, Roy S, Das P, Louzir H, Croft SL, Modabber F, Walden P, , 2014. Modular multiantigen T cell epitope-enriched DNA vaccine against human leishmaniasis. Science Transl Med 6: 234ra56.[Crossref] [Google Scholar]
  22. Grimaldi G, Jr Teva A, Porrozzi R, Pinto MA, Marchevsky RS, Rocha MG, Dutra MS, Bruña-Romero O, Fernandes AP, Gazzinelli RT, , 2014. Clinical and parasitological protection in a Leishmania infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen. PLoS Negl Trop Dis 8: e2853.[Crossref] [Google Scholar]
  23. Maroof A, Brown N, Smith B, Hodgkinson MR, Maxwell A, Losch FO, Fritz U, Walden P, Lacey CN, Smith DF, Aebischer T, Kaye PM, , 2012. Therapeutic vaccination with recombinant adenovirus reduces splenic parasite burden in experimental visceral leishmaniasis. J Infect Dis 205: 853863.[Crossref] [Google Scholar]
  24. Gomes R, Oliveira F, Teixeira C, Meneses C, Gilmore DC, Elnaiem DE, Kamhawi S, Valenzuela JG, , 2012. Immunity to sand fly salivary protein LJM11 modulates host response to vector-transmitted Leishmania conferring ulcer-free protection. J Invest Dermatol 132: 27352743.[Crossref] [Google Scholar]
  25. Zahedifard F, Gholami E, Taheri T, Taslimi Y, Doustdari F, Seyed N, Torkashvand F, Meneses C, Papadopoulou B, Kamhawi S, Valenzuela JG, Rafati S, , 2014. Enhanced protective efficacy of nonpathogenic recombinant Leishmania tarentolae expressing cysteine proteinases combined with a sand fly salivary antigen. PLoS Negl Trop Dis 8: e2751.[Crossref] [Google Scholar]
  26. Oliveira F, Rowton E, Aslan H, Gomes R, Castrovinci PA, Alvarenga PH, Abdeladhim M, Teixeira C, Meneses C, Kleeman LT, Guimarães-Costa AB, Rowland TE, Gilmore D, Doumbia S, Reed SG, Lawyer PG, Andersen JF, Kamhawi S, Valenzuela JG, , 2015. A sand fly salivary protein vaccine shows efficacy against vector-transmitted cutaneous leishmaniasis in nonhuman primates. Sci Transl Med 7: 290. [Google Scholar]
  27. Selvapandiyan A, Dey R, Gannavaram S, Lakhal-Naouar I, Duncan R, Salotra P, Nakhasi HL, , 2012. Immunity to visceral leishmaniasis using genetically defined live-attenuated parasites. J Trop Med 2012: 631460.[Crossref] [Google Scholar]
  28. Selvapandiyan A, Dey R, Nylen S, Duncan R, Sacks D, Nakhasi HL, , 2009. Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol 183: 18131820.[Crossref] [Google Scholar]
  29. Fiuza JA, Gannavaram S, Santiago H da C, Selvapandiyan A, Souza DM, Passos LS, de Mendonça LZ, Lemos-Giunchetti D da S, Ricci ND, Bartholomeu DC, Giunchetti RC, Bueno LL, Correa-Oliveira R, Nakhasi HL, Fujiwara RT, , 2015. Vaccination using live attenuated Leishmania donovani centrin deleted parasites induces protection in dogs against Leishmania infantum . Vaccine 33: 280288.[Crossref] [Google Scholar]
  30. Dey R, Natarajan G, Bhattacharya P, Cummings H, Dagur PK, Terrazas C, Selvapandiyan A, McCoy JP, Jr Duncan R, Satoskar AR, Nakhasi HL, , 2014. Characterization of cross-protection by genetically modified live-attenuated Leishmania donovani parasites against Leishmania mexicana . J Immunol 193: 35133527.[Crossref] [Google Scholar]
  31. Dutta S, Waki K, Chang KP, , 2012. Combinational sensitization of Leishmania with uroporphyrin and aluminum phthalocyanine synergistically enhances their photodynamic inactivation in vitro and in vivo. Photochem Photobiol 88: 620625.[Crossref] [Google Scholar]
  32. Kumari S, Samant M, Khare P, Misra P, Dutta S, Kolli BK, Sharma S, Chang KP, Dube A, , 2009. Photodynamic vaccination of hamsters with inducible suicidal mutants of Leishmania amazonensis elicits immunity against visceral leishmaniasis. Eur J Immunol 39: 178191.[Crossref] [Google Scholar]
  33. Lun ZR, Wu MS, Chen YF, Wang JY, Zhou XN, Liao LF, Chen JP, Chow LM, Chang KP, , 2015. Visceral leishmaniasis in China: an endemic disease under control. Clin Microbiol Rev 28: 9871004.[Crossref] [Google Scholar]
  34. Lee BY, Burke DS, , 2010. Constructing target product profiles (TPPs) to help vaccines overcome post-approval obstacles. Vaccine 28: 28062809.[Crossref] [Google Scholar]
  35. Lee BY, Bacon KM, Shah M, Kitchen SB, Connor DL, Slayton RB, , 2012. The economic value of a visceral leishmaniasis vaccine in Bihar state, India. Am J Trop Med Hyg 86: 417425.[Crossref] [Google Scholar]
  36. Singh D, Pandey K, Das VN, Das S, Verma N, Ranjan A, Lal SC, Topno KR, Singh SK, Verma RB, Kumar A, Sardar AH, Purkait B, Das P, , 2013. Evaluation of rK-39 strip test using urine for diagnosis of visceral leishmaniasis in an endemic region of India. Am J Trop Med Hyg 88: 222226.[Crossref] [Google Scholar]
  37. Saljoughian N, Taheri T, Rafati S, , 2014. Live vaccination tactics: possible approaches for controlling visceral leishmaniasis. Front Immunol 5: 134.[Crossref] [Google Scholar]
  38. Khamesipour A, Abbasi A, Firooz A, Mohammadi AM, Eskandari SE, Jaafari MR, , 2012. Treatment of cutaneous lesion of 20 years' duration caused by leishmanization. Indian J Dermatol 57: 123125.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 08 Mar 2016
  • Accepted : 21 Jun 2016
  • Published online : 07 Sep 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error