1921
Control and Elimination of Plasmodium vivax Malaria: The Evidence Base
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

This paper summarizes our current understanding of the biology of , how it differs from , and how these differences explain the need for -tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate reside in 1) its higher vectorial capacity compared with due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on ; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.16-0160
2016-12-28
2017-09-24
Loading full text...

Full text loading...

/deliver/fulltext/14761645/95/6_Suppl/4.html?itemId=/content/journals/10.4269/ajtmh.16-0160&mimeType=html&fmt=ahah

References

  1. Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA, , 2009. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis 9: 555566.[Crossref]
  2. Cogswell FB, , 1992. The hypnozoite and relapse in primate malaria. Clin Microbiol Rev 5: 2635.[Crossref]
  3. White NJ, , 2011. Determinants of relapse periodicity in Plasmodium vivax malaria. Malar J 10: 297.[Crossref]
  4. Contacos PG, Collins WE, Jeffery GM, Krotoski WA, Howard WA, , 1972. Studies on the characterization of Plasmodium vivax strains from Central America. Am J Trop Med Hyg 21: 707712.
  5. Imwong M, Boel ME, Pagornrat W, Pimanpanarak M, McGready R, Day NP, Nosten F, White NJ, , 2012. The first Plasmodium vivax relapses of life are usually genetically homologous. J Infect Dis 205: 680683.[Crossref]
  6. Chen N, Auliff A, Rieckmann K, Gatton M, Cheng Q, , 2007. Relapses of Plasmodium vivax infection result from clonal hypnozoites activated at predetermined intervals. J Infect Dis 195: 934941.[Crossref]
  7. Bright AT, Manary MJ, Tewhey R, Arango EM, Wang T, Schork NJ, Yanow SK, Winzeler EA, , 2014. A high resolution case study of a patient with recurrent Plasmodium vivax infections shows that relapses were caused by meiotic siblings. PLoS Negl Trop Dis 8: e2882.[Crossref]
  8. Shanks GD, White NJ, , 2013. The activation of vivax malaria hypnozoites by infectious diseases. Lancet Infect Dis 13: 900906.[Crossref]
  9. White NJ, Imwong M, , 2012. Relapse. Adv Parasitol 80: 113150.[Crossref]
  10. Dembélé L, Gego A, Zeeman AM, Franetich JF, Silvie O, Rametti A, Le Grand R, Dereuddre-Bosquet N, Sauerwein R, van Gemert GJ, Vaillant JC, Thomas AW, Snounou G, Kocken CH, Mazier D, , 2011. Towards an in vitro model of Plasmodium hypnozoites suitable for drug discovery. PLoS One 6: e18162.[Crossref]
  11. Dembélé L, Franetich JF, Lorthiois A, Gego A, Zeeman AM, Kocken CH, Le Grand R, Dereuddre-Bosquet N, van Gemert GJ, Sauerwein R, Vaillant JC, Hannoun L, Fuchter MJ, Diagana TT, Malmquist NA, Scherf A, Snounou G, Mazier D, , 2014. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat Med 20: 307312.[Crossref]
  12. March S, Ng S, Velmurugan S, Galstian A, Shan J, Logan DJ, Carpenter AE, Thomas D, Sim BK, Mota MM, Hoffman SL, Bhatia SN, , 2013. A microscale human liver platform that supports the hepatic stages of Plasmodium falciparum and P. vivax . Cell Host Microbe 14: 104115.[Crossref]
  13. Mikolajczak SA, Vaughan AM, Kangwanrangsan N, Roobsoong W, Fishbaugher M, Yimamnuaychok N, Rezakhani N, Lakshmanan V, Singh N, Kaushansky A, Camargo N, Baldwin M, Lindner SE, Adams JH, Sattabongkot J, Kappe SH, , 2015. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe 17: 526535.[Crossref]
  14. Mendes C, Dias F, Figueiredo J, Mora VG, Cano J, de Sousa B, do Rosário VE, Benito A, Berzosa P, Arez AP, , 2011. Duffy negative antigen is no longer a barrier to Plasmodium vivax—molecular evidences from the African West Coast (Angola and Equatorial Guinea). PLoS Negl Trop Dis 5: e1192.[Crossref]
  15. Ménard D, Barnadas C, Bouchier C, Henry-Halldin C, Gray LR, Ratsimbasoa A, Thonier V, Carod JF, Domarle O, Colin Y, Bertrand O, Picot J, King CL, Grimberg BT, Mercereau-Puijalon O, Zimmerman PA, , 2010. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci USA 107: 59675971.[Crossref]
  16. Ba H, Duffy CW, Ahouidi AD, Deh YB, Diallo MY, Tandia A, Conway DJ, , 2016. Widespread distribution of Plasmodium vivax malaria in Mauritania on the interface of the Maghreb and west Africa. Malar J 15: 1.[Crossref]
  17. Pearson RD, Amato R, Auburn S, Miotto O, Almagro-Garcia J, Amaratunga C, Suon S, Mao S, Noviyanti R, Trimarsanto H, Marfurt J, Anstey NM, William T, Boni MF, Dolecek C, Tran HT, White NJ, Michon P, Siba P, Tavul L, Harrison G, Barry A, Mueller I, Ferreira MU, Karunaweera N, Randrianarivelojosia M, Gao Q, Hubbart C, Hart L, Jeffery B, Drury E, Mead D, Kekre M, Campino S, Manske M, Cornelius VJ, MacInnis B, Rockett KA, Miles A, Rayner JC, Fairhurst RM, Nosten F, Price RN, Kwiatkowski DP, , 2016. Genomic analysis of local variation and recent evolution in Plasmodium vivax . Nat Genet 48: 959964.[Crossref]
  18. Ménard D, Chan ER, Benedet C, Ratsimbasoa A, Kim S, Chim P, Do C, Witkowski B, Durand R, Thellier M, Severini C, Legrand E, Musset L, Nour BY, Mercereau-Puijalon O, Serre D, Zimmerman PA, , 2013. Whole genome sequencing of field isolates reveals a common duplication of the Duffy binding protein gene in Malagasy Plasmodium vivax strains. PLoS Negl Trop Dis 7: e2489.[Crossref]
  19. Hester J, Chan ER, Menard D, Mercereau-Puijalon O, Barnwell JW, Zimmerman PA, Serre D, , 2013. De novo assembly of a field isolate genome reveals novel Plasmodium vivax erythrocyte invasion genes. PLoS Negl Trop Dis 7: e2569.[Crossref]
  20. Van Buskirk KM, Cole-Tobian JL, Baisor M, Sevova ES, Bockarie M, King CL, Adams JH, , 2004. Antigenic drift in the ligand domain of Plasmodium vivax duffy binding protein confers resistance to inhibitory antibodies. J Infect Dis 190: 15561562.[Crossref]
  21. Galinski MR, Medina CC, Ingravallo P, Barnwell JW, , 1992. A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 69: 12131226.[Crossref]
  22. Gruszczyk J, Lim NT, Arnott A, He WQ, Nguitragool W, Roobsoong W, Mok YF, Murphy JM, Smith KR, Lee S, Bahlo M, Mueller I, Barry AE, Tham WH, , 2016. Structurally conserved erythrocyte-binding domain in Plasmodium provides a versatile scaffold for alternate receptor engagement. Proc Natl Acad Sci USA 113: E191E200.[Crossref]
  23. Carlton JM, Adams JH, Silva JC, Bidwell SL, Lorenzi H, Caler E, Crabtree J, Angiuoli SV, Merino EF, Amedeo P, Cheng Q, Coulson RM, Crabb BS, Del Portillo HA, Essien K, Feldblyum TV, Fernandez-Becerra C, Gilson PR, Gueye AH, Guo X, Kang'a S, Kooij TW, Korsinczky M, Meyer EV, Nene V, Paulsen I, White O, Ralph SA, Ren Q, Sargeant TJ, Salzberg SL, Stoeckert CJ, Sullivan SA, Yamamoto MM, Hoffman SL, Wortman JR, Gardner MJ, Galinski MR, Barnwell JW, Fraser-Liggett CM, , 2008. Comparative genomics of the neglected human malaria parasite Plasmodium vivax . Nature 455: 757763.[Crossref]
  24. Rayner JC, Tran TM, Corredor V, Huber CS, Barnwell JW, Galinski MR, , 2005. Dramatic difference in diversity between Plasmodium falciparum and Plasmodium vivax reticulocyte binding-like genes. Am J Trop Med Hyg 72: 666674.
  25. Collins WE, Jeffery GM, Roberts JM, , 2003. A retrospective examination of anemia during infection of humans with Plasmodium vivax . Am J Trop Med Hyg 68: 410412.
  26. Lin E, Kiniboro B, Gray L, Dobbie S, Robinson L, Laumaea A, Schöpflin S, Stanisic D, Betuela I, Blood-Zikursh M, Siba P, Felger I, Schofield L, Zimmerman P, Mueller I, , 2010. Differential patterns of infection and disease with P. falciparum and P. vivax in young Papua New Guinean children. PLoS One 5: e9047.[Crossref]
  27. Anstey NM, Douglas NM, Poespoprodjo JR, Price RN, , 2012. Plasmodium vivax: clinical spectrum, risk factors and pathogenesis. Adv Parasitol 80: 151201.[Crossref]
  28. Karunaweera ND, Grau GE, Gamage P, Carter R, Mendis KN, , 1992. Dynamics of fever and serum levels of tumor necrosis factor are closely associated during clinical paroxysms in Plasmodium vivax malaria. Proc Natl Acad Sci USA 89: 32003203.[Crossref]
  29. Shanks GD, , 2012. Control and elimination of Plasmodium vivax . Adv Parasitol 80: 301341.[Crossref]
  30. Betuela I, Rosanas-Urgell A, Kiniboro B, Stanisic DI, Samol L, de Lazzari E, Del Portillo HA, Siba P, Alonso PL, Bassat Q, Mueller I, , 2012. Relapses contribute significantly to the risk of Plasmodium vivax infection and disease in Papua New Guinean children 1–5 years of age. J Infect Dis 206: 17711780.[Crossref]
  31. Robinson LJ, Wampfler R, Betuela I, Karl S, White MT, Li Wai Suen CS, Hofmann NE, Kiniboro B, Waltmann A, Brewster J, Lorry L, Tarongka N, Samol L, Silkey M, Bassat Q, Siba PM, Schofield L, Felger I, Mueller I, , 2015. Strategies for understanding and reducing the Plasmodium vivax and Plasmodium ovale hypnozoite reservoir in Papua New Guinean children: a randomised placebo-controlled trial and mathematical model. PLoS Med 12: e1001891.[Crossref]
  32. Douglas NM, John GK, von Seidlein L, Anstey NM, Price RN, , 2012. Chemotherapeutic strategies for reducing transmission of Plasmodium vivax malaria. Adv Parasitol 80: 271300.[Crossref]
  33. Mendis K, Sina BJ, Marchesini P, Carter R, , 2001. The neglected burden of Plasmodium vivax malaria. Am J Trop Med Hyg 64 (Suppl 1): 97106.
  34. Bousema T, Drakeley C, , 2011. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin Microbiol Rev 24: 377410.[Crossref]
  35. McKenzie FE, Jeffery GM, Collins WE, , 2007. Gametocytemia and fever in human malaria infections. J Parasitol 93: 627633.[Crossref]
  36. Barbosa S, Gozze AB, Lima NF, Batista CL, Bastos M da S, Nicolete VC, Fontoura PS, Gonçalves RM, Viana SA, Menezes MJ, Scopel KK, Cavasini CE, Malafronte R dos S, da Silva-Nunes M, Vinetz JM, Castro MC, Ferreira MU, , 2014. Epidemiology of disappearing Plasmodium vivax malaria: a case study in rural Amazonia. PLoS Negl Trop Dis 8: e3109.[Crossref]
  37. Koepfli C, Rodrigues PT, Antao T, Orjuela-Sánchez P, Van den Eede P, Gamboa D, van Hong N, Bendezu J, Erhart A, Barnadas C, Ratsimbasoa A, Menard D, Severini C, Menegon M, Nour BY, Karunaweera N, Mueller I, Ferreira MU, Felger I, , 2015. Plasmodium vivax diversity and population structure across four continents. PLoS Negl Trop Dis 9: e0003872.[Crossref]
  38. Beurskens M, Mens P, Schallig H, Syafruddin D, Asih PB, Hermsen R, Sauerwein R, , 2009. Quantitative determination of Plasmodium vivax gametocytes by real-time quantitative nucleic acid sequence-based amplification in clinical samples. Am J Trop Med Hyg 81: 366369.
  39. Chansamut N, Buates S, Takhampunya R, Udomsangpetch R, Bantuchai S, Sattabongkot J, , 2012. Correlation of Pfg377 ortholog gene expression of Plasmodium vivax and mosquito infection. Trop Med Int Health 17: 414422.[Crossref]
  40. Rieckmann KH, Davis DR, Hutton DC, , 1989. Plasmodium vivax resistance to chloroquine? Lancet 334: 11831184.[Crossref]
  41. Schuurkamp GJ, Spicer PE, Kereu RK, Bulungol PK, Rieckmann KH, , 1992. Chloroquine-resistant Plasmodium vivax in Papua New Guinea. Trans R Soc Trop Med Hyg 86: 121122.[Crossref]
  42. Gething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Myers MF, George DB, Horby P, Wertheim HF, Price RN, Müeller I, Baird JK, Hay SI, , 2012. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis 6: e1814.[Crossref]
  43. Danis K, Baka A, Lenglet A, Van Bortel W, Terzaki I, Tseroni M, Detsis M, Papanikolaou E, Balaska A, Gewehr S, Dougas G, , 2011. Autochthonous Plasmodium vivax malaria in Greece, 2011. Euro Surveill 16: 15.
  44. Vakali A, Patsoula E, Spanakos G, Danis K, Vassalou E, Tegos N, Economopoulou A, Baka A, Pavli A, Koutis C, Hadjichristodoulou C, , 2012. Malaria in Greece, 1975 to 2010. Euro Surveill 17: 18.
  45. Andriopoulos P, Economopoulou A, Spanakos G, Assimakopoulos G, , 2013. A local outbreak of autochthonous Plasmodium vivax malaria in Laconia, Greece—a re-emerging infection in the southern borders of Europe? Int J Infect Dis 17: e125e128.[Crossref]
  46. Macdonald G, , 1957. The Epidemiology and Control of Malaria. London, United Kingdom: Oxford University Press.
  47. Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL, , 2013. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. Adv Parasitol 81: 77131.[Crossref]
  48. Alves FP, Durlacher RR, Menezes MJ, Krieger H, Silva LH, Camargo EP, , 2002. High prevalence of asymptomatic Plasmodium vivax and Plasmodium falciparum infections in native Amazonian populations. Am J Trop Med Hyg 66: 641648.
  49. Koepfli C, Colborn KL, Kiniboro B, Lin E, Speed TP, Siba PM, Felger I, Mueller I, , 2013. A high force of Plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in Papua New Guinean children. PLoS Negl Trop Dis 7: e2403.[Crossref]
  50. Baird JK, , 1995. Host age as a determinant of naturally acquired immunity to Plasmodium falciparum . Parasitol Today 11: 105111.[Crossref]
  51. Silamut K, White NJ, , 1993. Relation of the stage of parasite development in the peripheral blood to prognosis in severe falciparum malaria. Trans R Soc Trop Med Hyg 87: 436443.[Crossref]
  52. Suwanarusk R, Cooke BM, Dondorp AM, Silamut K, Sattabongkot J, White NJ, Udomsangpetch R, , 2004. The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax . J Infect Dis 189: 190194.[Crossref]
  53. Handayani S, Chiu DT, Tjitra E, Kuo JS, Lampah D, Kenangalem E, Renia L, Snounou G, Price RN, Anstey NM, Russell B, , 2009. High deformability of Plasmodium vivax-infected red blood cells under microfluidic conditions. J Infect Dis 199: 445450.[Crossref]
  54. Maier AG, Cooke BM, Cowman AF, Tilley L, , 2009. Malaria parasite proteins that remodel the host erythrocyte. Nat Rev Microbiol 7: 341354.[Crossref]
  55. Tjitra E, Anstey NM, Sugiarto P, Warikar N, Kenangalem E, Karyana M, Lampah DA, Price RN, , 2008. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: a prospective study in Papua, Indonesia. PLoS Med 5: e128.[Crossref]
  56. Costa FT, Lopes SC, Albrecht L, Ataíde R, Siqueira AM, Souza RM, Russell B, Renia L, Marinho CR, Lacerda MV, , 2012. On the pathogenesis of Plasmodium vivax malaria: perspectives from the Brazilian field. Int J Parasitol 42: 10991105.[Crossref]
  57. Baird JK, , 2013. Evidence and implications of mortality associated with acute Plasmodium vivax malaria. Clin Microbiol Rev 26: 3657.[Crossref]
  58. Barber BE, William T, Grigg MJ, Parameswaran U, Piera KA, Price RN, Yeo TW, Anstey NM, , 2015. Parasite biomass-related inflammation, endothelial activation, microvascular dysfunction and disease severity in vivax malaria. PLoS Pathog 11: e1004558.[Crossref]
  59. Ord RL, Tami A, Sutherland CJ, , 2008. ama1 genes of sympatric Plasmodium vivax and P. falciparum from Venezuela differ significantly in genetic diversity and recombination frequency. PLoS One 3: e3366.[Crossref]
  60. Neafsey DE, Galinsky K, Jiang RH, Young L, Sykes SM, Saif S, Gujja S, Goldberg JM, Young S, Zeng Q, Chapman SB, Dash AP, Anvikar AR, Sutton PL, Birren BW, Escalante AA, Barnwell JW, Carlton JM, , 2012. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum . Nat Genet 44: 10461050.[Crossref]
  61. Orjuela-Sanchez P, Sa JM, Brandi MC, Rodrigues PT, Bastos MS, Amaratunga C, Duong S, Fairhurst RM, Ferreira MU, , 2013. Higher microsatellite diversity in Plasmodium vivax than in sympatric Plasmodium falciparum populations in Pursat, western Cambodia. Exp Parasitol 134: 318326.[Crossref]
  62. Jennison C, Arnott A, Tessier N, Tavul L, Koepfli C, Felger I, Siba PM, Reeder JC, Bahlo M, Mueller I, Barry AE, , 2015. Plasmodium vivax populations are more genetically diverse and less structured than sympatric Plasmodium falciparum populations. PLoS Negl Trop Dis 9: e0003634.[Crossref]
  63. Chenet SM, Tapia LL, Escalante AA, Durand S, Lucas C, Bacon DJ, , 2012. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax . Malar J 11: 68.[Crossref]
  64. Noviyanti R, Coutrier F, Utami RA, Trimarsanto H, Tirta YK, Trianty L, Kusuma A, Sutanto I, Kosasih A, Kusriastuti R, Hawley WA, Laihad F, Lobo N, Marfurt J, Clark TG, Price RN, Auburn S, , 2015. Contrasting transmission dynamics of co-endemic Plasmodium vivax and P. falciparum: implications for malaria control and elimination. PLoS Negl Trop Dis 9: e0003739.[Crossref]
  65. Chan CW, Sakihama N, Tachibana S, Idris ZM, Lum JK, Tanabe K, Kaneko A, , 2015. Plasmodium vivax and Plasmodium falciparum at the crossroads of exchange among islands in Vanuatu: implications for malaria elimination strategies. PLoS One 10: e0119475.[Crossref]
  66. Hupalo DN, Luo Z, Melnikov A, Sutton PL, Rogov P, Escalante A, Vallejo AF, Herrera S, Arevalo-Herrera M, Fan Q, Wang Y, Cui L, Lucas CM, Durand S, Sanchez JF, Baldeviano GC, Lescano AG, Laman M, Barnadas C, Barry A, Mueller I, Kazura JW, Eapen A, Kanagaraj D, Valecha N, Ferreira MU, Roobsoong W, Nguitragool W, Sattabonkot J, Gamboa D, Kosek M, Vinetz JM, Gonzalez-Ceron L, Birren BW, Neafsey DE, Carlton JM, , 2016. Population genomics studies identify signatures of global dispersal and drug resistance in Plasmodium vivax . Nat Genet 48: 953958.[Crossref]
  67. Koepfli C, Ross A, Kiniboro B, Smith TA, Zimmerman PA, Siba P, Mueller I, Felger I, , 2011. Multiplicity and diversity of Plasmodium vivax infections in a highly endemic region in Papua New Guinea. PLoS Negl Trop Dis 5: e1424.[Crossref]
  68. Barry AE, Waltmann A, Koepfli C, Barnadas C, Mueller I, , 2015. Uncovering the transmission dynamics of Plasmodium vivax using population genetics. Pathog Glob Health 109: 142152.[Crossref]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.16-0160
Loading
/content/journals/10.4269/ajtmh.16-0160
Loading

Data & Media loading...

  • Received : 28 Feb 2016
  • Accepted : 29 Sep 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error