Volume 94, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



The mosquito-borne Zika virus (ZIKV) is responsible for an explosive ongoing outbreak of febrile illness across the Americas. ZIKV was previously thought to cause only a mild, flu-like illness, but during the current outbreak, an association with Guillain–Barré syndrome and microcephaly in neonates has been detected. A previous study showed that ZIKV requires murine adaptation to generate reproducible murine disease. In our study, a low-passage Cambodian isolate caused disease and mortality in mice lacking the interferon (IFN) alpha receptor (A129 mice) in an age-dependent manner, but not in similarly aged immunocompetent mice. In A129 mice, viremia peaked at ∼10 plaque-forming units/mL by day 2 postinfection (PI) and reached high titers in the spleen by day 1. ZIKV was detected in the brain on day 3 PI and caused signs of neurologic disease, including tremors, by day 6. Robust replication was also noted in the testis. In this model, all mice infected at the youngest age (3 weeks) succumbed to illness by day 7 PI. Older mice (11 weeks) showed signs of illness, viremia, and weight loss but recovered starting on day 8. In addition, AG129 mice, which lack both type I and II IFN responses, supported similar infection kinetics to A129 mice, but with exaggerated disease signs. This characterization of an Asian lineage ZIKV strain in a murine model, and one of the few studies reporting a model of Zika disease and demonstrating age-dependent morbidity and mortality, could provide a platform for testing the efficacy of antivirals and vaccines.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Haddow AD, Schuh AJ, Yasuda CY, Kasper MR, Heang V, Huy R, Guzman H, Tesh RB, Weaver SC, , 2012. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl Trop Dis 6: e1477.[Crossref] [Google Scholar]
  2. Mackenzie JS, Gubler DJ, Petersen LR, , 2004. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 10: S98S109.[Crossref] [Google Scholar]
  3. Dick GW, Kitchen SF, Haddow AJ, , 1952. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46: 509520.[Crossref] [Google Scholar]
  4. Hayes EB, , 2009. Zika virus outside Africa. Emerg Infect Dis 15: 13471350.[Crossref] [Google Scholar]
  5. Duffy MR, Chen TH, Hancock WT, Powers AM, Kool JL, Lanciotti RS, Pretrick M, Marfel M, Holzbauer S, Dubray C, Guillaumot L, Griggs A, Bel M, Lambert AJ, Laven J, Kosoy O, Panella A, Biggerstaff BJ, Fischer M, Hayes EB, , 2009. Zika virus outbreak on Yap Island, Federated States of Micronesia. N Engl J Med 360: 25362543.[Crossref] [Google Scholar]
  6. Mlakar J, Korva M, Tul N, Popovic M, Poljsak-Prijatelj M, Mraz J, Kolenc M, Resman Rus K, Vesnaver Vipotnik T, Fabjan Vodusek V, Vizjak A, Pizem J, Petrovec M, Avsic Zupanc T, , 2016. Zika virus associated with microcephaly. N Engl J Med 374: 951958.[Crossref] [Google Scholar]
  7. Schuler-Faccini L, Ribeiro EM, Feitosa IM, Horovitz DDG, Cavalcanti DP, Pessoa A, Doriqui MJR, Neri JI, Neto JMP, Wanderley HYC, Cernach M, El-Husny AS, Pone MVS, Serao CLC, Sanseverino MTV, Brazilian Medical Genetics Society–Zika Embryopathy Task Force; , 2016. Possible association between Zika virus infection and microcephaly—Brazil, 2015. MMWR 65: 5962. [Google Scholar]
  8. Oehler E, Watrin L, Larre P, Leparc-Goffart I, Lastere S, Valour F, Baudouin L, Mallet H, Musso D, Ghawche F, , 2014. Zika virus infection complicated by Guillain-Barre syndrome—case report, French Polynesia, December 2013. Euro Surveill 19: pii.20720.[Crossref] [Google Scholar]
  9. Tavernise S, McNeil DG, , 2016. Zika virus a global health emergency, W.H.O Says. New York Times. Available at: http://www.nytimes.com/2016/02/02/health/zika-virus-world-health-organization.html?_r=0. [Google Scholar]
  10. Zanluca C, de Melo VC, Mosimann AL, Dos Santos GI, Dos Santos CN, Luz K, , 2015. First report of autochthonous transmission of Zika virus in Brazil. Mem Inst Oswaldo Cruz 110: 569572.[Crossref] [Google Scholar]
  11. Centers for Disease Control and Prevention, 2016. Areas with Zika. Available at: http://www.cdc.gov/zika/geo/index.html. Accessed February 9, 2016. [Google Scholar]
  12. WHO, 2016. Zika Virus Situation Report. Geneva, Switzerland: World Health Organization. [Google Scholar]
  13. Samarasekera U, Triunfol M, , 2016. Concern over Zika virus grips the world. Lancet 387: 521524.[Crossref] [Google Scholar]
  14. Musso D, Nhan T, Robin E, Roche C, Bierlaire D, Zisou K, Shan Yan A, Cao-Lormeau VM, Broult J, , 2014. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Euro Surveill 19: pii.20761.[Crossref] [Google Scholar]
  15. Foy BD, Kobylinski KC, Chilson Foy JL, Blitvich BJ, Travassos da Rosa A, Haddow AD, Lanciotti RS, Tesh RB, , 2011. Probable non-vector-borne transmission of Zika virus, Colorado, USA. Emerg Infect Dis 17: 880882.[Crossref] [Google Scholar]
  16. Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM, , 2015. Potential sexual transmission of Zika virus. Emerg Infect Dis 21: 359361.[Crossref] [Google Scholar]
  17. Cao-Lormeau VM, Roche C, Teissier A, Robin E, Berry AL, Mallet HP, Sall AA, Musso D, , 2014. Zika virus, French Polynesia, South Pacific, 2013. Emerg Infect Dis 20: 10851086. [Google Scholar]
  18. Dick GW, , 1952. Zika virus. II. Pathogenicity and physical properties. Trans R Soc Trop Med Hyg 46: 521534.[Crossref] [Google Scholar]
  19. Rossi SL, Guerbois M, Gorchakov R, Plante KS, Forrester NL, Weaver SC, , 2013. IRES-based Venezuelan equine encephalitis vaccine candidate elicits protective immunity in mice. Virology 437: 8188.[Crossref] [Google Scholar]
  20. Plante KS, Rossi SL, Bergren NA, Seymour RL, Weaver SC, , 2015. Extended preclinical safety, efficacy and stability testing of a live-attenuated chikungunya vaccine candidate. PLoS Negl Trop Dis 9: e0004007.[Crossref] [Google Scholar]
  21. Heang V, Yasuda CY, Sovann L, Haddow AD, Travassos da Rosa AP, Tesh RB, Kasper MR, , 2012. Zika virus infection, Cambodia, 2010. Emerg Infect Dis 18: 349351.[Crossref] [Google Scholar]
  22. Lever MS, Piercy TJ, Steward JA, Eastaugh L, Smither SJ, Taylor C, Salguero FJ, Phillpotts RJ, , 2012. Lethality and pathogenesis of airborne infection with filoviruses in A129 α/β −/− interferon receptor-deficient mice. J Med Microbiol 61: 815.[Crossref] [Google Scholar]
  23. Ryman KD, Meier KC, Gardner CL, Adegboyega PA, Klimstra WB, , 2007. Non-pathogenic Sindbis virus causes hemorrhagic fever in the absence of alpha/beta and gamma interferons. Virology 368: 273285.[Crossref] [Google Scholar]
  24. Meier KC, Gardner CL, Khoretonenko MV, Klimstra WB, Ryman KD, , 2009. A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS Pathog 5: e1000614.[Crossref] [Google Scholar]
  25. Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E, , 2004. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. J Virol 78: 27012710.[Crossref] [Google Scholar]
  26. Thibodeaux BA, Garbino NC, Liss NM, Piper J, Blair CD, Roehrig JT, , 2012. A small animal peripheral challenge model of yellow fever using interferon-receptor deficient mice and the 17D-204 vaccine strain. Vaccine 30: 31803187.[Crossref] [Google Scholar]
  27. Arzuza-Ortega L, Polo A, Pérez-Tatis G, López-García H, Parra E, Pardo-Herrera LC, Rico-Turca AM, Villamil-Gomez W, Rodriguez-Morales AJ, , 2016. Fatal Zika virus infection in girl with sickle cell disease, Colombia [letter]. Emerg Infect Dis 22: doi: 10.3201/eid2205.151934.[Crossref] [Google Scholar]
  28. Yin Z, Chen YL, Schul W, Wang QY, Gu F, Duraiswamy J, Kondreddi RR, Niyomrattanakit P, Lakshminarayana SB, Goh A, Xu HY, Liu W, Liu B, Lim JY, Ng CY, Qing M, Lim CC, Yip A, Wang G, Chan WL, Tan HP, Lin K, Zhang B, Zou G, Bernard KA, Garrett C, Beltz K, Dong M, Weaver M, He H, Pichota A, Dartois V, Keller TH, Shi PY, , 2009. An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci USA 106: 2043520439.[Crossref] [Google Scholar]
  29. Plante K, Wang E, Partidos CD, Weger J, Gorchakov R, Tsetsarkin K, Borland EM, Powers AM, Seymour R, Stinchcomb DT, Osorio JE, Frolov I, Weaver SC, , 2011. Novel chikungunya vaccine candidate with an IRES-based attenuation and host range alteration mechanism. PLoS Pathog 7: e1002142.[Crossref] [Google Scholar]
  30. Lobigs M, Mullbacher A, Wang Y, Pavy M, Lee E, , 2003. Role of type I and type II interferon responses in recovery from infection with an encephalitic flavivirus. J Gen Virol 84: 567572.[Crossref] [Google Scholar]
  31. Bell TM, Field EJ, Narang HK, , 1971. Zika virus infection of the central nervous system of mice. Arch Gesamte Virusforsch 35: 183193.[Crossref] [Google Scholar]
  32. McNeil DG, Tavernise S, , 2016. Zika infection transmitted by sex reported in Texas. New York Times. Available at: www.nytimes.com/2016/02/03/health/zika-sex-transmission-texas.html. [Google Scholar]
  33. Vestergaard BF, Scherer WF, , 1971. An RNA viral infection of hamster testes and uteri resulting in orchitis and effects on fertility and reproduction. Am J Pathol 64: 541556. [Google Scholar]
  34. Oster AM, Brooks JT, Stryker JE, Kachur RE, Mead P, Pesik NT, Petersen LR, , 2016. Interim guidelines for prevention of sexual transmission of Zika virus—United States, 2016. MMWR 65: 12.[Crossref] [Google Scholar]
  35. Gourinat AC, O'Connor O, Calvez E, Goarant C, Dupont-Rouzeyrol M, , 2015. Detection of Zika virus in urine. Emerg Infect Dis 21: 8486.[Crossref] [Google Scholar]
  36. Musso D, Roche C, Nhan TX, Robin E, Teissier A, Cao-Lormeau VM, , 2015. Detection of Zika virus in saliva. J Clin Virol 68: 5355.[Crossref] [Google Scholar]
  37. Tonry JH, Brown CB, Cropp CB, Co JK, Bennett SN, Nerurkar VR, Kuberski T, Gubler DJ, , 2005. West Nile virus detection in urine. Emerg Infect Dis 11: 12941296.[Crossref] [Google Scholar]
  38. Kondo M, Akachi S, Ando K, Nomura T, Yamanaka K, Mizutani H, , 2016. Two Japanese siblings affected with chikungunya fever with different clinical courses: imported infections from the Cook Islands. J Dermatol. doi: 10.1111/1346-8138.13253. [Google Scholar]
  39. Gardner J, Rudd PA, Prow NA, Belarbi E, Roques P, Larcher T, Gresh L, Balmaseda A, Harris E, Schroder WA, Suhrbier A, , 2015. Infectious chikungunya virus in the saliva of mice, monkeys and humans. PLoS One 10: e0139481.[Crossref] [Google Scholar]
  40. Seymour RL, Adams AP, Leal G, Alcorn MD, Weaver SC, , 2015. A rodent model of chikungunya virus infection in RAG1−/− mice, with features of persistence, for vaccine safety evaluation. PLoS Negl Trop Dis 9: e0003800.[Crossref] [Google Scholar]
  41. Tonry JH, Xiao SY, Siirin M, Chen H, da Rosa AP, Tesh RB, , 2005. Persistent shedding of West Nile virus in urine of experimentally infected hamsters. Am J Trop Med Hyg 72: 320324. [Google Scholar]
  42. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A, Luplertlop N, Perera-Lecoin M, Surasombatpattana P, Talignani L, Thomas F, Cao-Lormeau VM, Choumet V, Briant L, Despres P, Amara A, Yssel H, Misse D, , 2015. Biology of Zika virus infection in human skin cells. J Virol 89: 88808896.[Crossref] [Google Scholar]
  43. Prestwood TR, Morar MM, Zellweger RM, Miller R, May MM, Yauch LE, Lada SM, Shresta S, , 2012. Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/β receptor-deficient mice. J Virol 86: 1256112570.[Crossref] [Google Scholar]
  44. Paessler S, Yun NE, Judy BM, Dziuba N, Zacks MA, Grund AH, Frolov I, Campbell GA, Weaver SC, Estes DM, , 2007. Alpha-beta T cells provide protection against lethal encephalitis in the murine model of VEEV infection. Virology 367: 307323.[Crossref] [Google Scholar]
  45. Tappe D, Perez-Giron JV, Zammarchi L, Rissland J, Ferreira DF, Jaenisch T, Gomez-Medina S, Gunther S, Bartoloni A, Munoz-Fontela C, Schmidt-Chanasit J, , 2015. Cytokine kinetics of Zika virus-infected patients from acute to reconvalescent phase. Med Microbiol Immunol (Berl). doi: 10.1007/s00430-015-0445-7. [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 12 Feb 2016
  • Accepted : 14 Mar 2016
  • Published online : 01 Jun 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error