Volume 95, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Chikungunya fever, an acute and often chronic arthralgic disease caused by the mosquito-borne alphavirus, chikungunya virus (CHIKV), spread into the Americas in late 2013. Since then it has caused epidemics in nearly all New World countries, the second largest being Colombia with over 450,000 suspected cases beginning in September, 2014, and focused in Bolivar Department in the north. We examined 32 human sera from suspected cases, including diverse age groups and both genders, and sequenced the CHIKV envelope glycoprotein genes, known determinants of vector host range. As expected for Asian lineage CHIKV strains, these isolates lacked known –adaptive mutations. All the Colombian strains were closely related to those from the Virgin Islands, Saint Lucia, Mexico, Puerto Rico, and Brazil, consistent with a single, point-source introduction from the southeast Asia/Pacific region. Two substitutions in the E2 and E1 envelope glycoprotein genes were found in the Colombian strains, especially E1-K211E involving a residue shown previously to affect epistatically the penetrance of the E1-A226V –adaptive substitution. We also identified two amino acid substitutions unique to all American CHIKV sequences: E2-V368A and 6K-L20M. Only one codon, 6K-47, had a high nonsynonymous substitution rate suggesting positive selection.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Cardona-Ospina JA, Vera-Polania F, Rodriguez-Morales AJ, , 2015. Chikungunya or not, differential diagnosis and the importance of laboratory confirmation for clinical and epidemiological research: comment on the article by Rosario et al. Clin Rheumatol 35: 829830.[Crossref] [Google Scholar]
  2. Tsetsarkin KA, Chen R, Sherman MB, Weaver SC, , 2011. Chikungunya virus: evolution and genetic determinants of emergence. Curr Opin Virol 1: 310317.[Crossref] [Google Scholar]
  3. Voss JE, Vaney M-C, Duquerroy S, Vonrhein C, Girard-Blanc C, Crublet E, Thompson A, Bricogne G, Rey FA, , 2010. Glycoprotein organization of chikungunya virus particles revealed by X-ray crystallography. Nature 468: 709712.[Crossref] [Google Scholar]
  4. Weaver SC, Lecuit M, , 2015. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med 372: 12311239.[Crossref] [Google Scholar]
  5. Porta J, Jose J, Roehrig JT, Blair CD, Kuhn RJ, Rossmann MG, , 2014. Locking and blocking the viral landscape of an alphavirus with neutralizing antibodies. J Virol 88: 96169623.[Crossref] [Google Scholar]
  6. Kam YW, Lum FM, Teo TH, Lee WW, Simarmata D, Harjanto S, Chua CL, Chan YF, Wee JK, Chow A, Lin RT, Leo YS, Le Grand R, Sam IC, Tong JC, Roques P, Wiesmuller KH, Renia L, Rotzschke O, Ng LF, , 2012. Early neutralizing IgG response to chikungunya virus in infected patients targets a dominant linear epitope on the E2 glycoprotein. EMBO Mol Med 4: 330343.[Crossref] [Google Scholar]
  7. Weger-Lucarelli J, Aliota MT, Kamlangdee A, Osorio JE, , 2015. Identifying the role of E2 domains on alphavirus neutralization and protective immune responses. PLoS Negl Trop Dis 9: e0004163.[Crossref] [Google Scholar]
  8. Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L, , 2013. Chikungunya virus infection: an overview. New Microbiol 36: 211227. [Google Scholar]
  9. Weaver SC, , 2014. Arrival of chikungunya virus in the New World: prospects for spread and impact on public health. PLoS Negl Trop Dis 8: e2921.[Crossref] [Google Scholar]
  10. Mourão MP, Bastos M de S, Figueiredo RM, Gimaque JB, Alves V do CR, Saraiva Md, Figueiredo ML, Ramasawmy R, Nogueira ML, Figueiredo LT, , 2015. Arboviral diseases in the western Brazilian Amazon: a perspective and analysis from a tertiary health and research center in Manaus, State of Amazonas. Rev Soc Bras Med Trop 48 (Suppl 1): 2026.[Crossref] [Google Scholar]
  11. Luis M, De Figueiredo G, , 2014. Emerging alphaviruses in the Americas: Chikungunya and Mayaro. Rev Soc Bras Med Trop 47: 677683.[Crossref] [Google Scholar]
  12. Hayes EB, , 2009. Zika virus outside Africa. Emerg Infect Dis 15: 13471350.[Crossref] [Google Scholar]
  13. Weaver SC, Reisen WK, , 2010. Present and future arboviral threats. Antiviral Res 85: 328345.[Crossref] [Google Scholar]
  14. Rodriguez-Morales AJ, , 2015. Zika: the new arbovirus threat for Latin America. J Infect Dev Ctries 9: 684685.[Crossref] [Google Scholar]
  15. World Health Organization, 2012. Global leprosy situation, 2012. Wkly Epidemiol Rec 87: 317328. [Google Scholar]
  16. Bhowmik D, Chiranjib Sampath Kumar KP, , 2010. Chikungunya epidemic in India: a major public-health disaster. Res J Pharm Biol Chem Sci 1: 6373. [Google Scholar]
  17. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, Cordioli P, Fortuna C, Boros S, Magurano F, Silvi G, Angelini P, Dottori M, Ciufolini MG, Majori GC, Cassone A, CHIKV Study Group, , 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370: 18401846.[Crossref] [Google Scholar]
  18. Gould EA, Gallian P, De Lamballerie X, Charrel RN, , 2010. First cases of autochthonous dengue fever and chikungunya fever in France: from bad dream to reality! Clin Microbiol Infect 16: 17021704.[Crossref] [Google Scholar]
  19. Delisle E, Rousseau C, Broche B, Ambert GL, Cochet A, Prat C, Foulongne V, Ferre JB, Catelinois O, Flusin O, Tchernonog E, Moussion IE, Wiegandt A, Septfons A, Mendy A, Moyano MB, Laporte L, Maurel J, Jourdain F, Reynes J, Paty MC, Golliot F, , 2015. Chikungunya outbreak in Montpellier, France, September to October 2014. Euro Surveill 20: 21108.[Crossref] [Google Scholar]
  20. Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, De Lamballerie X, , 2014. Chikungunya in the Americas. Lancet 383: 514.[Crossref] [Google Scholar]
  21. Cassadou S, Boucau S, Petit-Sinturel M, Huc P, Leparc-Goffart I, Ledrans M, , 2014. Emergence of chikungunya fever on the French side of Saint Martin island, October to December 2013. Euro Surveill 19: 20752.[Crossref] [Google Scholar]
  22. Pan American Health Organization (PAHO), 2015. Number of Reported Cases of Chikungunya Fever in the Americas, by Country or Territory-Cumulative Cases. Available at: http://www.paho.org/hq/index.phpoption=com_topics&view=readall&cid=5927&Itemid=40931&lang=en. Accessed January 7, 2016. [Google Scholar]
  23. Pan American Health Organization (PAHO), 2015. Epidemiological Week 52. Available at: http://www.paho.org/hq/index.phpoption=com_topics&view=readall&cid=5927&Itemid=40931&lang=en. Accessed January 7, 2016. [Google Scholar]
  24. SIVIGILA, 2015. Instituto Nacional de Salud de Colombia. Boletin Epidemiologico Semanal.Semana 49. Available at: http://www.ins.gov.co/boletin-epidemiologico/BoletnEpidemiolgico/2015Boletinepidemiologicosemana49.pdf. Accessed January 7, 2016. [Google Scholar]
  25. WHO Media Centre, 2015. World Health Organization Fact sheet 327. Available at: http://www.who.int/mediacentre/factsheets/fs327/en/. Accessed January 7, 2016. [Google Scholar]
  26. Weaver SC, Forrester NL, , 2015. Chikungunya: evolutionary history and recent epidemic spread. Antiviral Res 120: 3239.[Crossref] [Google Scholar]
  27. Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS, Guerbois M, Forrester N, Perng GC, Sreekumar E, Leal G, Huang J, Mukhopadhyay S, Weaver SC, , 2014. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun 5: 114.[Crossref] [Google Scholar]
  28. Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, Huang J, Weaver SC, , 2011. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci USA 108: 78727877.[Crossref] [Google Scholar]
  29. Nunes MRT, Faria NR, de Vasconcelos JM, Golding N, Kraemer MU, de Oliveira LF, Azevedo R do S da S, da Silva DEA, da Silva EVP, da Silva SP, Carvalho VL, Coelho GE, Cruz ACR, Rodrigues SG, da Silva Gonçalves Vianez JL, Nunes BTD, Cardoso JF, Tesh RB, Hay SI, Pybus OG, da Costa Vasconcelos PF, , 2015. Emergence and potential for spread of chikungunya virus in Brazil. BMC Med 13: 102.[Crossref] [Google Scholar]
  30. Instituto Nacional de Salud Colombia, 2014. Boletín diario No 1. Chikungunya. Available at: http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/informacion-epidemiologica/BoletinChikungunya/INS%20Boletin%20Diario%20No%201%20CHIK.pdf. Accessed July 3, 2016. [Google Scholar]
  31. Instituto Nacional de Salud Colombia, 2014. Boletin epidemiologico-Evento prioritario. Boletín diario No 27. Available at: http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/informacion-epidemiologica/BoletinChikungunya/INS%20Boletin%20Diario%20No_27%20CHIK.pdf. Accessed July 3, 2016. [Google Scholar]
  32. De la Hoz F, , 2014. Circular 045-2014. Bogota, Colombia: Instituto Nacional de Salud (INS) de Colombia. Available at: http://www.ins.gov.co/lineas-de-accion/Subdireccion-Vigilancia/informacion-epidemiologica/Lineamientos/Circular%20045-2014.pdf. Accessed July 3, 2016. [Google Scholar]
  33. Cardona-Ospina JA, Henao-SanMartin V, Paniz-Mondolfi AE, Rodríguez-Morales AJ, , 2015. Mortality and fatality due to chikungunya virus infection in Colombia. J Clin Virol 70: 1415.[Crossref] [Google Scholar]
  34. Travassos da Rosa AP, Mather TN, Takeda T, Whitehouse C, Shope RE, Popov VL, Guzman H, Coffey L, Araujo TP, Tesh RB, , 2002. Two new rhabdoviruses (Rhabdoviridae) isolated from birds during surveillance for arboviral encephalitis, northeastern United States. Emerg Infect Dis 8: 614618.[Crossref] [Google Scholar]
  35. Tesh RB, , 1979. A method for the isolation and identification of dengue viruses, using mosquito cell cultures. Am J Trop Med Hyg 28: 10531059. Available at: http://www.ncbi.nlm.nih.gov/pubmed/41456. Accessed December 24, 2015. [Google Scholar]
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S, , 2013. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30: 27252729.[Crossref] [Google Scholar]
  37. Kimura M, , 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111120.[Crossref] [Google Scholar]
  38. Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, Scheffler K, , 2013. FUBAR: a Fast, Unconstrained Bayesian Approximation for inferring selection. Mol Biol Evol 30: 11961205.[Crossref] [Google Scholar]
  39. Mattar S, Miranda J, Pinzon H, Tique V, Bolanos A, Aponte J, Arrieta G, Gonzalez M, Barrios K, Contreras H, Alvarez J, Aleman A, , 2015. Outbreak of chikungunya virus in the north Caribbean area of Colombia: clinical presentation and phylogenetic analysis. J Infect Dev Ctries 9: 11261132.[Crossref] [Google Scholar]
  40. Hapuarachchi HC, Bandara KBAT, Sumanadasa SDM, Hapugoda MD, Lai Y-L, Lee K-S, Tan L-K, Lin RTP, Ng LFP, Bucht G, Abeyewickreme W, Ng L-C, , 2010. Re-emergence of chikungunya virus in south-east Asia: virological evidence from Sri Lanka and Singapore. J Gen Virol 91: 10671076.[Crossref] [Google Scholar]
  41. Tsetsarkin KA, Weaver SC, , 2011. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLoS Pathog 7: e1002412.[Crossref] [Google Scholar]
  42. Niyas KP, Abraham R, Unnikrishnan RN, Mathew T, Nair S, Manakkadan A, Issac A, Sreekumar E, , 2010. Molecular characterization of chikungunya virus isolates from clinical samples and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, south India. Virol J 7: 189.[Crossref] [Google Scholar]
  43. Duong V, Andries AC, Ngan C, Sok T, Richner B, Asgari-Jirhandeh N, Bjorge S, Huy R, Ly S, Laurent D, Hok B, Roces MC, Ong S, Char MC, Deubel V, Tarantola A, Buchy P, , 2012. Reemergence of chikungunya virus in Cambodia. Emerg Infect Dis 18: 20662069.[Crossref] [Google Scholar]
  44. Díaz-Quiñonez JA, Escobar-Escamilla N, Ortíz-Alcántara J, Vázquez-Pichardo M, de la Luz Torres-Rodríguez M, Nuñez-León A, Torres-Longoria B, López-Martínez I, Ruiz-Matus C, Kuri-Morales P, Ramírez-González JE, , 2016. Identification of Asian genotype of chikungunya virus isolated in Mexico. Virus Genes 52: 127129.[Crossref] [Google Scholar]
  45. Tan KK, Kristy A, Sy D, Tandoc AO, Khoo JJ, Sulaiman S, Chang LY, Abubakar S, , 2015. Independent emergence of the cosmopolitan Asian chikungunya virus, Philippines 2012. Nat Publ Gr 5: 12279. [Google Scholar]
  46. Arankalle VA, Shrivastava S, Cherian S, Gunjikar RS, Walimbe AM, Jadhav SM, Sudeep AB, Mishra AC, , 2007. Genetic divergence of chikungunya viruses in India (1963–2006) with special reference to the 2005–2006 explosive epidemic. J Gen Virol 88: 19671976.[Crossref] [Google Scholar]
  47. Shrinet J, Jain S, Sharma A, Singh S, Mathur K, Rana V, Bhatnagar RK, Gupta B, Gaind R, Deb M, Sunil S, , 2012. Genetic characterization of chikungunya virus from New Delhi reveal emergence of a new molecular signature in Indian isolates. Virol J 9: 100.[Crossref] [Google Scholar]
  48. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S, , 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201.[Crossref] [Google Scholar]
  49. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, Vaney M-C, Lavenir R, Pardigon N, Reynes J-M, Pettinelli F, Biscornet L, Diancourt L, Michel S, Duquerroy S, Guigon G, Frenkiel M-P, Bréhin A-C, Cubito N, Desprès P, Kunst F, Rey FA, Zeller H, Brisse S, , 2006. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med 3: e263.[Crossref] [Google Scholar]
  50. de Lamballerie X, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, Gould EA, , 2008. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign of things to come? Virol J 5: 33.[Crossref] [Google Scholar]
  51. Tsetsarkin KA, McGee CE, Volk SM, Vanlandingham DL, Weaver SC, Higgs S, , 2009. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS One 4: e6835.[Crossref] [Google Scholar]
  52. Charrel RN, Leparc-Goffart I, Gallian P, de Lamballerie X, , 2014. Globalization of chikungunya: 10 years to invade the world. Clin Microbiol Infect 20: 662663.[Crossref] [Google Scholar]
  53. Lanciotti RS, Valadere AM, , 2014. Transcontinental movement of Asian genotype chikungunya virus. Emerg Infect Dis 20: 14001402.[Crossref] [Google Scholar]
  54. SIVIGILA-Instituto Nacional de Salud de Colombia, 2015. Boletin epidemiologico semanal, Semana epidemiológica número 52 de 2015 (27 dic.–02 ene.). Available at: http://www.ins.gov.co/boletin-epidemiologico/BoletnEpidemiolgico/2015BoletinepidemiologicoSemana52.pdf. Accessed January 9, 2016. [Google Scholar]
  55. Mavalankar D, Shastri P, Bandyopadhyay T, Parmar J, Ramani KV, , 2008. Increased mortality rate associated with chikungunya epidemic, Ahmedabad, India. Emerg Infect Dis 14: 412415.[Crossref] [Google Scholar]
  56. Renault P, Josseran L, Pierre V, , 2008. Chikungunya-related fatality rates, Mauritius, India, and Reunion Island. Emerg Infect Dis 14: 1327.[Crossref] [Google Scholar]
  57. Rodriguez-Morales AJ, Cardona-Ospina JA, Villamil-Gómez W, Paniz-Mondolfi AE, , 2015. How many patients with post-chikungunya chronic inflammatory rheumatism can we expect in the new endemic areas of Latin America? Rheumatol Int 35: 20912094.[Crossref] [Google Scholar]
  58. Rodríguez-Morales AJ, Calvache-Benavides CE, Giraldo-Gómez J, Hurtado-Hurtado N, Yepes-Echeverri MC, García-Loaiza CJ, Patiño-Barbosa AM, Sabogal-Roman JA, Patiño-Valencia S, Hidalgo-Zambrano DM, Vásquez-Serna H, Jimenez-Canizales CE, , 2015. Post-chikungunya chronic arthralgia: results from a retrospective follow-up study of 131 cases in Tolima, Colombia. Travel Med Infect Dis 14: 5859.[Crossref] [Google Scholar]
  59. Cardona-Ospina JA, Diaz-Quijano FA, Rodríguez-Morales AJ, , 2015. Burden of chikungunya in Latin American countries: estimates of disability-adjusted life-years (DALY) lost in the 2014 epidemic. Int J Infect Dis 38: 6061.[Crossref] [Google Scholar]
  60. Cardona-Ospina JA, Rodriguez-Morales AJ, Villamil-Gómez WE, , 2015. The burden of chikungunya in one coastal department of Colombia (Sucre): estimates of the disability adjusted life years (DALY) lost in the 2014 epidemic. J Infect Public Health 8: 644646.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 06 Feb 2016
  • Accepted : 06 Jun 2016
  • Published online : 07 Sep 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error