Volume 94, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



is the primary vector of the dengue and chikungunya viruses. After mating, male seminal fluid molecules cause females to become unreceptive to a subsequent mating. This response is often assumed to be immediate and complete, but a growing body of evidence suggests that some females do mate more than once. It is unknown how quickly a female becomes unreceptive to a second mating. Furthermore, the degree to which she remains monandrous after laying several batches of eggs has not been rigorously tested. Therefore, we assessed the rates of polyandry in two sets of experiments using wild-type males and those with fluorescent sperm. The first experiment tested the likelihood of polyandry after postmating intervals of various durations. Most females became refractory to a second mating within 2 hours after mating, and rates of polyandry ranged from 24% immediately after mating to 3% at 20 hours after mating. The second experiment tested whether females were polyandrous after cycles of blood meals and oviposition. No re-insemination was found after one, three, or five such cycles. This study is the first to demonstrate that polyandrous behavior depends on the postmating interval. Our results will inform future applications that depend on an accurate knowledge of mating behavior, including models of gene flow, investigations of molecules that drive female mating behavior, and control strategies that deploy genetically modified mosquitoes into the field.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI, , 2013. The global distribution and burden of dengue. Nature 496: 504507.[Crossref] [Google Scholar]
  2. WHO, 2015. Impact of Dengue. Available at: http://www.who.int/csr/disease/dengue/impact/en/. Accessed September 26, 2015. [Google Scholar]
  3. Burt FJ, Rolph MS, Rulli NE, Mahalingam S, Heise MT, , 2012. Chikungunya: a re-emerging virus. Lancet 379: 662671.[Crossref] [Google Scholar]
  4. Villar L, Dayan GH, Arredondo-Garcia JL, Rivera DM, Cunha R, Deseda C, Reynales H, Costa MS, Morales-Ramirez JO, Carrasquilla G, Rey LC, Dietze R, Luz K, Rivas E, Miranda Montoya MC, Cortes Supelano M, Zambrano B, Langevin E, Boaz M, Tornieporth N, Saville M, Noriega F, CYD Study Group, , 2015. Efficacy of a tetravalent dengue vaccine in children in Latin America. N Engl J Med 372: 113123.[Crossref] [Google Scholar]
  5. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA, , 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.[Crossref] [Google Scholar]
  6. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, , 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.[Crossref] [Google Scholar]
  7. Harris AF, Nimmo D, McKemey AR, Kelly N, Scaife S, Donnelly CA, Beech C, Petrie WD, Alphey L, , 2011. Field performance of engineered male mosquitoes. Nat Biotechnol 29: 10341037.[Crossref] [Google Scholar]
  8. Spielman A, Leahy MG, Skaff V, , 1967. Seminal loss in repeatedly mated female Aedes aegypti . Biol Bull 132: 404412.[Crossref] [Google Scholar]
  9. Gwadz RW, Craig GB, Jr Hickey WA, , 1971. Female sexual behavior as the mechanism rendering Aedes aegypti refractory to insemination. Biol Bull 140: 201214.[Crossref] [Google Scholar]
  10. Craig GB, Jr, 1967. Mosquitoes: female monogamy induced by male accessory gland substance. Science 156: 14991501.[Crossref] [Google Scholar]
  11. Helinski MEH, Deewatthanawong P, Sirot LK, Wolfner MF, Harrington LC, , 2012. Duration and dose-dependency of female sexual receptivity responses to seminal fluid proteins in Aedes albopictus and Ae. aegypti mosquitoes. J Insect Physiol 58: 13071313.[Crossref] [Google Scholar]
  12. Oliva CF, Damiens D, Vreysen MJB, Lemperiere G, Gilles J, , 2013. Reproductive strategies of Aedes albopictus (Diptera: Culicidae) and implications for the sterile insect technique. PLoS One 8: e78884.[Crossref] [Google Scholar]
  13. Gabrieli P, Kakani EG, Mitchell SN, Mameli E, Want EJ, Mariezcurrena Anton A, Serrao A, Baldini F, Catteruccia F, , 2014. Sexual transfer of the steroid hormone 20E induces the postmating switch in Anopheles gambiae . Proc Natl Acad Sci USA 111: 1635316358.[Crossref] [Google Scholar]
  14. Chen PS, Stumm-Zollinger E, Aigaki T, Balmer J, Bienz M, Bohlen P, , 1988. A male accessory gland peptide that regulates reproductive behavior of female D. melanogaster . Cell 54: 291298.[Crossref] [Google Scholar]
  15. Chapman T, Bangham J, Vinti G, Seifried B, Lung O, Wolfner MF, Smith HK, Partridge L, , 2003. The sex peptide of Drosophila melanogaster: female post-mating responses analyzed by using RNA interference. Proc Natl Acad Sci USA 100: 99239928.[Crossref] [Google Scholar]
  16. Tram U, Wolfner MF, , 1998. Seminal fluid regulation of female sexual attractiveness in Drosophila melanogaster . Proc Natl Acad Sci USA 95: 40514054.[Crossref] [Google Scholar]
  17. Bretman A, Lawniczak MKN, Boone J, Chapman T, , 2010. A mating plug protein reduces early female remating in Drosophila melanogaster . J Insect Physiol 56: 107113.[Crossref] [Google Scholar]
  18. Scott D, , 1986. Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proc Natl Acad Sci USA 83: 84298433.[Crossref] [Google Scholar]
  19. Gwadz RW, Craig GB, , 1970. Female polygamy due to inadequate semen transfer in Aedes aegypti . Mosq News 30: 355360. [Google Scholar]
  20. Williams RW, Berger A, , 1980. The relation of female polygamy to gonotrophic activity in the ROCK strain of Aedes aegypti . Mosq News 40: 597604. [Google Scholar]
  21. Young ADM, Downe AER, , 1982. Renewal of sexual receptivity in mated female mosquitos, Aedes aegypti . Physiol Entomol 7: 467471.[Crossref] [Google Scholar]
  22. Helinski MEH, Valerio L, Facchinelli L, Scott TW, Ramsey J, Harrington LC, , 2012. Evidence of polyandry for Aedes aegypti in semifield enclosures. Am J Trop Med Hyg 86: 635641.[Crossref] [Google Scholar]
  23. Richardson JB, Jameson SB, Gloria-Soria A, Wesson DM, Powell J, , 2015. Evidence of limited polyandry in a natural population of Aedes aegypti . Am J Trop Med Hyg 93: 189193.[Crossref] [Google Scholar]
  24. Perez-Staples D, Shelly TE, Yuval B, , 2013. Female mating failure and the failure of ‘mating’ in sterile insect programs. Entomol Exp Appl 146: 6678.[Crossref] [Google Scholar]
  25. Alphey N, Alphey L, Bonsall MB, , 2011. A model framework to estimate impact and cost of genetics-based sterile insect methods for dengue vector control. PLoS One 6: e25384.[Crossref] [Google Scholar]
  26. Atkinson MP, Su Z, Alphey N, Alphey LS, Coleman PG, Wein LM, , 2007. Analyzing the control of mosquito-borne diseases by a dominant lethal genetic system. Proc Natl Acad Sci USA 104: 95409545.[Crossref] [Google Scholar]
  27. Magori K, Legros M, Puente ME, Focks DA, Scott TW, Lloyd AL, Gould F, , 2009. Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies. PLoS Neglect Trop Dis 3: e508.[Crossref] [Google Scholar]
  28. Smith RC, Walter MF, Hice RH, O'Brochta DA, Atkinson PW, , 2007. Testis-specific expression of the beta2 tubulin promoter of Aedes aegypti and its application as a genetic sex-separation marker. Insect Mol Biol 16: 6171.[Crossref] [Google Scholar]
  29. Spielman A, Sr Leahy MG, Skaff V, , 1969. Failure of effective insemination of young female Aedes aegypti mosquitoes. J Insect Physiol 15: 14711479.[Crossref] [Google Scholar]
  30. Spielman A, , 1964. The mechanics of copulation in Aedes aegypti . Biol Bull 127: 324344.[Crossref] [Google Scholar]
  31. Maciel-de-Freitas R, Codeco CT, Lourenco-de-Oliveira R, , 2007. Daily survival rates and dispersal of Aedes aegypti females in Rio de Janeiro, Brazil. Am J Trop Med Hyg 76: 659665. [Google Scholar]
  32. Simmons LW, , 2005. The evolution of polyandry: sperm competition, sperm selection, and offspring viability. Annu Rev Ecol Evol Syst 36: 125146.[Crossref] [Google Scholar]
  33. Mavale M, Parashar D, Sudeep A, Gokhale M, Ghodke Y, Geevarghese G, Arankalle V, Mishra AC, , 2010. Venereal transmission of chikungunya virus by Aedes aegypti mosquitoes (Diptera: Culicidae). Am J Trop Med Hyg 83: 12421244.[Crossref] [Google Scholar]
  34. Chapman T, Liddle LF, Kalb JM, Wolfner MF, Partridge L, , 1995. Cost of mating in Drosophila melanogaster females is mediated by male accessory gland products. Nature 373: 241244.[Crossref] [Google Scholar]
  35. Markow TA, Coppola A, Watts TD, , 2001. How Drosophila males make eggs: it is elemental. Proc R Soc Lond B Biol Sci 268: 15271532.[Crossref] [Google Scholar]
  36. Fritzsche K, Arnqvist G, , 2015. The effects of male phenotypic condition on reproductive output in a sex role-reversed beetle. Anim Behav 102: 209215.[Crossref] [Google Scholar]
  37. Alcock J, Buchmann SL, , 1985. The significance of post-insemination display by male Centris pallida (Hymenoptera: Anthophoridae). Z Tierpsychol 68: 231243.[Crossref] [Google Scholar]
  38. Huck UW, Lisk RD, , 1986. Mating-induced inhibition of receptivity in the female golden hamster. I. Short-term and long-term effects. Behav Neural Biol 45: 107119.[Crossref] [Google Scholar]
  39. Eberhard WG, , 1996. Female Control: Sexual Selection by Cryptic Female Choice. Princeton, NJ: Princeton University Press. [Google Scholar]
  40. Yasui Y, , 1997. A “good-sperm” model can explain the evolution of costly multiple mating by females. Am Nat 149: 573584.[Crossref] [Google Scholar]
  41. Fuchs MS, Craig GB, Jr Hiss EA, , 1968. The biochemical basis of female monogamy in mosquitoes. I. Extraction of the active principle from Aedes aegypti . Life Sci 7: 835839.[Crossref] [Google Scholar]
  42. Fuchs MS, Hiss EA, , 1970. The partial purification and separation of the protein components of matrone from Aedes aegypti . J Insect Physiol 16: 931939.[Crossref] [Google Scholar]
  43. Hartberg WK, , 1971. Observations on the mating behaviour of Aedes aegypti in nature. Bull World Health Organ 45: 847850. [Google Scholar]
  44. Klowden MJ, , 2006. Switchover to the mated state by spermathecal activation in female Anopheles gambiae mosquitoes. J Insect Physiol 52: 679684.[Crossref] [Google Scholar]
  45. Rogers DW, Whitten MMA, Thailayil J, Soichot J, Levashina EA, Catteruccia F, , 2008. Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc Natl Acad Sci USA 105: 1939019395.[Crossref] [Google Scholar]
  46. Ponlawat A, Harrington LC, , 2009. Factors associated with male mating success of the dengue vector mosquito, Aedes aegypti . Am J Trop Med Hyg 80: 395400. [Google Scholar]
  47. Kuno G, , 2010. Early history of laboratory breeding of Aedes aegypti (Diptera: Culicidae) focusing on the origins and use of selected strains. J Med Entomol 47: 957971.[Crossref] [Google Scholar]
  48. Burton-Chellew MN, Beukeboom LW, West SA, Shuker DM, , 2007. Laboratory evolution of polyandry in the parasitoid wasp Nasonia vitripennis . Anim Behav 74: 11471154.[Crossref] [Google Scholar]
  49. Helinski MEH, Harrington LC, Takken W, Koenraadt CJM, , 2013. Considerations for male fitness in successful genetic vector control programs. , eds. Ecology of Parasite-Vector Interactions. Wageningen, The Netherlands: Wageningen Academic Publishers, 221244.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 11 Dec 2015
  • Accepted : 04 Jan 2016
  • Published online : 06 Apr 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error