Volume 94, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Geographical variations of snake venoms can result in suboptimal effectiveness of Indian antivenoms that are currently used in most South Asian countries. This study investigated the toxicity and neutralization profile of the venom and toxins from Pakistani spectacled cobra, , using VINS polyvalent antivenom (VPAV, India), monovalent antivenom (NKMAV, Thailand), and neuro bivalent antivenom (NBAV, Taiwan). Cation-exchange and reverse-phase high-performance liquid chromatography fractionations followed by toxin identification through liquid chromatography–mass spectrometry (MS)/MS indicated that the venom comprised mainly of postsynaptic neurotoxins (NTXs) (long neurotoxins [LNTXs], 28.3%; short neurotoxins [SNTXs], 8%), cytotoxins (CTXs) (31.2%), and acidic phospholipases A (12.3%). NKMAV is the most effective in neutralizing the lethal effect of the venom (potency = 1.1 mg venom/mL) and its LNTX (potency = 0.5 mg toxin/mL), consistent with the high content of LNTX in venom. VPAV was effective in neutralizing the CTX (potency = 0.4 mg toxin/mL), in agreement with the higher CTX abundance in Indian cobra venom. All the three antivenoms were weak in neutralizing the SNTX (potency = 0.03–0.04 mg toxin/mL), including NBAV that was raised from the SNTX-rich Taiwanese cobra venom. In a challenge-rescue experiment, envenomed mice were prevented from death by a maximal dose of VPAV (intravenous 200 μL) but the recovery from paralysis was slow, indicating the need for higher or repeated doses of VPAV. Our results suggest that optimal neutralization for Pakistani venom may be achieved by improving the formulation of antivenom production to enhance antivenom immunoreactivity against long and SNTXs.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Alirol E, Sharma SK, Bawaskar HS, Kuch U, Chappuis F, , 2010. Snake bite in south Asia: a review. PLoS Negl Trop Dis 4: e603.[Crossref] [Google Scholar]
  2. Tan KY, Tan CH, Fung SY, Tan NH, , 2015. Venomics, lethality and neutralization of Naja kaouthia (monocled cobra) venoms from three different geographical regions of southeast Asia. J Proteomics 120: 105125.[Crossref] [Google Scholar]
  3. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, Savioli L, Lalloo DG, de Silva HJ, , 2008. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med 5: e218.[Crossref] [Google Scholar]
  4. Warrell DA, Gutierrez JM, Calvete JJ, Williams D, , 2013. New approaches and technologies of venomics to meet the challenge of human envenoming by snakebites in India. Indian J Med Res 138: 3859. [Google Scholar]
  5. World Health Organization, 2010. Guidelines for the Management of Snake-bites. Geneva, Switzerland: World Health Organization, Regional Office for South-East Asia. [Google Scholar]
  6. Quraishi NA, Qureshi HI, Simpson ID, , 2008. A contextual approach to managing snake bite in Pakistan: snake bite treatment with particular reference to neurotoxieity and the ideal hospital snake bite kit. J Pak Med Assoc 58: 325331. [Google Scholar]
  7. Williams DJ, Gutierrez JM, Calvete JJ, Wuster W, Ratanabanangkoon K, Paiva O, Brown NI, Casewell NR, Harrison RA, Rowley PD, O'Shea M, Jensen SD, Winkel KD, Warrell DA, , 2011. Ending the drought: new strategies for improving the flow of affordable, effective antivenoms in Asia and Africa. J Proteomics 74: 17351767.[Crossref] [Google Scholar]
  8. Mackessy SP, Mackessy SP, , 2009. The field of reptile toxinology: snakes, lizards, and their venoms. , ed. Handbook of Venoms and Toxins of Reptiles. Boca Raton, FL: Taylor and Francis Group, CRC Press, 323 [Crossref] [Google Scholar]
  9. Alape-Giron A, Sanz L, Escolano J, Flores-Diaz M, Madrigal M, Sasa M, Calvete JJ, , 2008. Snake venomics of the lancehead pitviper Bothrops asper: geographic, individual, and ontogenetic variations. J Proteome Res 7: 35563571.[Crossref] [Google Scholar]
  10. Daltry JC, Ponnudurai G, Shin CK, Tan NH, Thorpe RS, Wuster W, , 1996. Electrophoretic profiles and biological activities: intraspecific variation in the venom of the Malayan pit viper (Calloselasma rhodostoma). Toxicon 34: 6779.[Crossref] [Google Scholar]
  11. Sintiprungrat K, Watcharatanyatip K, Senevirathne WD, Chaisuriya P, Chokchaichamnankit D, Srisomsap C, Ratanabanangkoon K, , 2015. A comparative study of venomics of Naja naja from India and Sri Lanka, clinical manifestations and antivenomics of an Indian polyspecific antivenom. J Proteomics 132: 131143 [Crossref] [Google Scholar]
  12. Ali SA, Yang DC, Jackson TN, Undheim EA, Koludarov I, Wood K, Jones A, Hodgson WC, McCarthy S, Ruder T, Fry BG, , 2013. Venom proteomic characterization and relative antivenom neutralization of two medically important Pakistani elapid snakes (Bungarus sindanus and Naja naja). J Proteomics 89: 1523.[Crossref] [Google Scholar]
  13. Khan MS, , 1999. Herpetology of habitat types of Pakistan. Pak J Zool 31: 275289. [Google Scholar]
  14. Khan MS, , 2002. A Guide to the Snakes of Pakistan. Frankfurt am Main, Germany: Edition Chimaira. [Google Scholar]
  15. Khan MS, , 2014. The snakebite problem in Pakistan. Bull Chicago Herp Soc 49: 165167. [Google Scholar]
  16. Wuster W, , 1996. Taxonomic changes and toxinology: systematic revisions of the Asiatic cobras (Naja naja species complex). Toxicon 34: 399406.[Crossref] [Google Scholar]
  17. World Health Organization, 2010. WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. Geneva, Switzerland: World Health Organization. [Google Scholar]
  18. Huang HW, Liu BS, Chien KY, Chiang LC, Huang SY, Sung WC, Wu WG, , 2015. Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 128: 92104.[Crossref] [Google Scholar]
  19. Leong PK, Fung SY, Tan CH, Sim SM, Tan NH, , 2015. Immunological cross-reactivity and neutralization of the principal toxins of Naja sumatrana and related cobra venoms by a Thai polyvalent antivenom (Neuro Polyvalent Snake Antivenom). Acta Trop 149: 8693.[Crossref] [Google Scholar]
  20. Howard-Jones N, , 1985. A CIOMS ethical code for animal experimentation. WHO Chron 39: 5156. [Google Scholar]
  21. Laemmli UK, , 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680685.[Crossref] [Google Scholar]
  22. Tan NH, Tan CS, , 1988. Acidimetric assay for phospholipase A using egg yolk suspension as substrate. Anal Biochem 170: 282288.[Crossref] [Google Scholar]
  23. Tan CH, Tan NH, Tan KY, Kwong KO, , 2015. Antivenom cross-neutralization of the venoms of Hydrophis schistosus and Hydrophis curtus, two common sea snakes in Malaysian waters. Toxins (Basel) 7: 572581.[Crossref] [Google Scholar]
  24. Finney DJ, , 1952. Probit Analysis. England, United Kingdom: Cambridge University Press. [Google Scholar]
  25. Tan CH, Tan KY, Lim SE, Tan NH, , 2015. Venomics of the beaked sea snake, Hydrophis schistosus: a minimalist toxin arsenal and its cross-neutralization by heterologous antivenoms. J Proteomics 126: 121130.[Crossref] [Google Scholar]
  26. Morais V, Ifran S, Berasain P, Massaldi H, , 2010. Antivenoms: potency or median effective dose, which to use? J Venom Anim Toxins Incl Trop Dis 16: 191193.[Crossref] [Google Scholar]
  27. Rodriguez-Acosta A, Lemoine K, Navarrete L, Giron ME, Aguilar I, , 2006. Experimental ophitoxemia produced by the opisthoglyphous lora snake (Philodryas olfersii) venom. Rev Soc Bras Med Trop 39: 193197.[Crossref] [Google Scholar]
  28. Tan CH, Tan NH, Gopalakrishnakone P, Inagaki H, Mukherjee AK, Rahmy TR, Vogel C-W, , 2015. Toxinology of snake venoms: the Malaysian context. , eds. Snake Venoms. The Netherlands: Springer, 137.[Crossref] [Google Scholar]
  29. Petras D, Sanz L, Segura A, Herrera M, Villalta M, Solano D, Vargas M, Leon G, Warrell DA, Theakston RD, Harrison RA, Durfa N, Nasidi A, Gutierrez JM, Calvete JJ, , 2011. Snake venomics of African spitting cobras: toxin composition and assessment of congeneric cross-reactivity of the pan-African EchiTAb-Plus-ICP antivenom by antivenomics and neutralization approaches. J Proteome Res 10: 12661280.[Crossref] [Google Scholar]
  30. Whitaker RCA, , 2004. Snakes of India: The Field Guide. Chennai, India: Draco Books. [Google Scholar]
  31. Leong PK, Sim SM, Fung SY, Sumana K, Sitprija V, Tan NH, , 2012. Cross neutralization of Afro-Asian cobra and Asian krait venoms by a Thai polyvalent snake antivenom (neuro polyvalent snake antivenom). PLoS Negl Trop Dis 6: e1672.[Crossref] [Google Scholar]
  32. Dayananda KS, Vishwanath BS, Sharath BK, Gopinath SM, , 2013. Purification of non-toxic acidic phospholipase A2 from Indian cobra (Naja naja) venom. Int J Pharma Bio Sci 4: 408415. [Google Scholar]
  33. Barber CM, Isbister GK, Hodgson WC, , 2013. Alpha neurotoxins. Toxicon 66: 4758.[Crossref] [Google Scholar]
  34. Yap MK, Tan NH, Sim SM, Fung SY, Tan CH, , 2014. Pharmacokinetics of Naja sumatrana (equatorial spitting cobra) venom and its major toxins in experimentally envenomed rabbits. PLoS Negl Trop Dis 8: e2890.[Crossref] [Google Scholar]
  35. Malasit P, Warrell DA, Chanthavanich P, Viravan C, Mongkolsapaya J, Singhthong B, Supich C, , 1986. Prediction, prevention, and mechanism of early (anaphylactic) antivenom reactions in victims of snake bites. Br Med J (Clin Res Ed) 292: 1720.[Crossref] [Google Scholar]
  36. Gutierrez JM, Leon G, Lomonte B, , 2003. Pharmacokinetic-pharmacodynamic relationships of immunoglobulin therapy for envenomation. Clin Pharmacokinet 42: 721741.[Crossref] [Google Scholar]
  37. Sriprapat S, Aeksowan S, Sapsutthipas S, Chotwiwatthanakun C, Suttijitpaisal P, Pratanaphon R, Khow O, Sitprija V, Ratanabanangkoon K, , 2003. The impact of a low dose, low volume, multi-site immunization on the production of therapeutic antivenoms in Thailand. Toxicon 41: 5764.[Crossref] [Google Scholar]
  38. Tan NH, , 1983. Improvement of Malayan cobra (Naja naja sputatrix) antivenin. Toxicon 21: 7579.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 02 Dec 2015
  • Accepted : 13 Jan 2016
  • Published online : 01 Jun 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error