Volume 95, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Visceral leishmaniasis (VL) is caused by the protozoan parasite . There are no vaccines and available drugs against leishmaniasis are toxic. Immunomodulators that specifically boost the anti-microbial activities of the immune cells could alleviate several of these limitations. Therefore, finding novel immunomodulators for VL therapy is a pressing need. This study is aimed to evaluate the immunomodulatory role of leptin, an adipocyte-derived hormone capable of regulating the immune response, in -infected mice. We observed that recombinant leptin treatment reduced splenic parasite burden compared with non-treated infected normal mice. Decrease in parasite burden correlated with an induction of innate immune response in antigen-presenting cells that showed an increase in nitric oxide, enhanced pro-inflammatory cytokine (interferon gamma [IFNγ], interleukin12 [IL]12, and IL1β) response in the splenocytes, indicating host-protecting Th1 response mediated by leptin. Moreover, in infected normal mice, leptin treatment induced IFNγ production from both CD4 and CD8 T cells, compared with non-treated infected mice. Alternatively, leptin-deficient (Ob/Ob) mice had higher splenic and liver parasite burden compared with the infected normal mice. However, leptin treatment failed to reduce the splenic parasite burden and improve a host-protective cytokine response in these mice. In addition, in contrast to dendritic cells (DCs) from a normal mouse, Ob/Ob mouse–derived DCs showed a defect in the induction of innate immune response on infection that could not be reversed by leptin treatment. Therefore, our findings reveal that leptin has a differential immunomodulatory effect in controlling VL in normal and Ob/Ob mice.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Desjeux P, , 2004. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 27: 305318.[Crossref] [Google Scholar]
  2. Desjeux P, , 1992. Human leishmaniases: epidemiology and public health aspects. World Health Stat Q 45: 267275. [Google Scholar]
  3. Murray HW, Berman JD, Davies CR, Saravia NG, , 2005. Advances in leishmaniasis. Lancet 366: 15611577.[Crossref] [Google Scholar]
  4. Banuls AL, Bastien P, Pomares C, Arevalo J, Fisa R, Hide M, , 2011. Clinical pleiomorphism in human leishmaniases, with special mention of asymptomatic infection. Clin Microbiol Infect 17: 14511461.[Crossref] [Google Scholar]
  5. Kaye PM, Aebischer T, , 2011. Visceral leishmaniasis: immunology and prospects for a vaccine. Clin Microbiol Infect 17: 14621470.[Crossref] [Google Scholar]
  6. Kaye P, Scott P, , 2011. Leishmaniasis: complexity at the host-pathogen interface. Nat Rev Microbiol 9: 604615.[Crossref] [Google Scholar]
  7. Harhay MO, Olliaro PL, Costa DL, Costa CH, , 2011. Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol 27: 403409.[Crossref] [Google Scholar]
  8. Dey R, Majumder N, Bhattacharyya Majumdar S, Bhattacharjee S, Banerjee S, Roy S, Majumdar S, , 2007. Induction of host protective Th1 immune response by chemokines in Leishmania donovani-infected BALB/c mice. Scand J Immunol 66: 671683.[Crossref] [Google Scholar]
  9. Dey R, Khan S, Pahari S, Srivastava N, Jadhav M, Saha B, , 2007. Functional paradox in host-pathogen interaction dictates the fate of parasites. Future Microbiol 2: 425437.[Crossref] [Google Scholar]
  10. Selvapandiyan A, Dey R, Nylen S, Duncan R, Sacks D, Nakhasi HL, , 2009. Intracellular replication-deficient Leishmania donovani induces long lasting protective immunity against visceral leishmaniasis. J Immunol 183: 18131820.[Crossref] [Google Scholar]
  11. Selvapandiyan A, Duncan R, Debrabant A, Lee N, Sreenivas G, Salotra P, Nakhasi HL, , 2006. Genetically modified live attenuated parasites as vaccines for leishmaniasis. Indian J Med Res 123: 455466. [Google Scholar]
  12. Banerjee A, De M, Ali N, , 2008. Complete cure of experimental visceral leishmaniasis with amphotericin B in stearylamine-bearing cationic liposomes involves down-regulation of IL-10 and favorable T cell responses. J Immunol 181: 13861398.[Crossref] [Google Scholar]
  13. Ghalib HW, Whittle JA, Kubin M, Hashim FA, el-Hassan AM, Grabstein KH, Trinchieri G, Reed SG, , 1995. IL-12 enhances Th1-type responses in human Leishmania donovani infections. J Immunol 154: 46234629. [Google Scholar]
  14. Kenney RT, Sacks DL, Gam AA, Murray HW, Sundar S, , 1998. Splenic cytokine responses in Indian kala-azar before and after treatment. J Infect Dis 177: 815818.[Crossref] [Google Scholar]
  15. Duthie MS, Raman VS, Piazza FM, Reed SG, , 2012. The development and clinical evaluation of second-generation leishmaniasis vaccines. Vaccine 30: 134141.[Crossref] [Google Scholar]
  16. Murray HW, , 1997. Endogenous interleukin-12 regulates acquired resistance in experimental visceral leishmaniasis. J Infect Dis 175: 14771479.[Crossref] [Google Scholar]
  17. Nylen S, Sacks D, , 2007. Interleukin-10 and the pathogenesis of human visceral leishmaniasis. Trends Immunol 28: 378384.[Crossref] [Google Scholar]
  18. Murphy ML, Wille U, Villegas EN, Hunter CA, Farrell JP, , 2001. IL-10 mediates susceptibility to Leishmania donovani infection. Eur J Immunol 31: 28482856.[Crossref] [Google Scholar]
  19. Murray HW, Moreira AL, Lu CM, DeVecchio JL, Matsuhashi M, Ma X, Heinzel FP, , 2003. Determinants of response to interleukin-10 receptor blockade immunotherapy in experimental visceral leishmaniasis. J Infect Dis 188: 458464.[Crossref] [Google Scholar]
  20. Nylen S, Maurya R, Eidsmo L, Manandhar KD, Sundar S, Sacks D, , 2007. Splenic accumulation of IL-10 mRNA in T cells distinct from CD4+CD25+ (Foxp3) regulatory T cells in human visceral leishmaniasis. J Exp Med 204: 805817.[Crossref] [Google Scholar]
  21. Bhattacharyya S, Ghosh S, Jhonson PL, Bhattacharya SK, Majumdar S, , 2001. Immunomodulatory role of interleukin-10 in visceral leishmaniasis: defective activation of protein kinase C-mediated signal transduction events. Infect Immun 69: 14991507.[Crossref] [Google Scholar]
  22. Holaday BJ, Pompeu MM, Jeronimo S, Texeira MJ, Sousa A de A, Vasconcelos AW, Pearson RD, Abrams JS, Locksley RM, , 1993. Potential role for interleukin-10 in the immunosuppression associated with kala azar. J Clin Invest 92: 26262632.[Crossref] [Google Scholar]
  23. Cua DJ, Stohlman SA, , 1997. In vivo effects of T helper cell type 2 cytokines on macrophage antigen-presenting cell induction of T helper subsets. J Immunol 159: 58345840. [Google Scholar]
  24. Lehn M, Weiser WY, Engelhorn S, Gillis S, Remold HG, , 1989. IL-4 inhibits H2O2 production and antileishmanial capacity of human cultured monocytes mediated by IFN-gamma. J Immunol 143: 30203024. [Google Scholar]
  25. Alexander J, Carter KC, Al-Fasi N, Satoskar A, Brombacher F, , 2000. Endogenous IL-4 is necessary for effective drug therapy against visceral leishmaniasis. Eur J Immunol 30: 29352943.[Crossref] [Google Scholar]
  26. Alexander J, Brombacher F, , 2012. T helper1/t helper2 cells and resistance/susceptibility to Leishmania infection: is this paradigm still relevant? Front Immunol 3: 80.[Crossref] [Google Scholar]
  27. Selvapandiyan A, Dey R, Gannavaram S, Lakhal-Naouar I, Duncan R, Salotra P, Nakhasi HL, , 2012. Immunity to visceral leishmaniasis using genetically defined live-attenuated parasites. J Trop Med 2012: 631460.[Crossref] [Google Scholar]
  28. Bhattacharya P, Bhattacharjee S, Gupta G, Majumder S, Adhikari A, Mukherjee A, Majumdar SB, Saha B, Majumdar S, , 2010. Arabinosylated lipoarabinomannan-mediated protection in visceral leishmaniasis through up-regulation of toll-like receptor 2 signaling: an immunoprophylactic approach. J Infect Dis 202: 145155.[Crossref] [Google Scholar]
  29. Matarese G, , 2000. Leptin and the immune system: how nutritional status influences the immune response. Eur Cytokine Netw 11: 714. [Google Scholar]
  30. Friedman JM, Halaas JL, , 1998. Leptin and the regulation of body weight in mammals. Nature 395: 763770.[Crossref] [Google Scholar]
  31. Faggioni R, Feingold KR, Grunfeld C, , 2001. Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J 15: 25652571.[Crossref] [Google Scholar]
  32. Moraes-Vieira PM, Larocca RA, Bassi EJ, Peron JP, Andrade-Oliveira V, Wasinski F, Araujo R, Thornley T, Quintana FJ, Basso AS, Strom TB, Camara NO, , 2014. Leptin deficiency impairs maturation of dendritic cells and enhances induction of regulatory T and Th17 cells. Eur J Immunol 44: 794806.[Crossref] [Google Scholar]
  33. Fernandez-Riejos P, Najib S, Santos-Alvarez J, Martin-Romero C, Perez-Perez A, Gonzalez-Yanes C, Sanchez-Margalet V, , 2010. Role of leptin in the activation of immune cells. Mediators Inflamm 2010: 568343.[Crossref] [Google Scholar]
  34. Mattioli B, Straface E, Quaranta MG, Giordani L, Viora M, , 2005. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J Immunol 174: 68206828.[Crossref] [Google Scholar]
  35. Loffreda S, Yang SQ, Lin HZ, Karp CL, Brengman ML, Wang DJ, Klein AS, Bulkley GB, Bao C, Noble PW, Lane MD, Diehl AM, , 1998. Leptin regulates proinflammatory immune responses. FASEB J 12: 5765. [Google Scholar]
  36. Sanchez-Pozo C, Rodriguez-Bano J, Dominguez-Castellano A, Muniain MA, Goberna R, Sanchez-Margalet V, , 2003. Leptin stimulates the oxidative burst in control monocytes but attenuates the oxidative burst in monocytes from HIV-infected patients. Clin Exp Immunol 134: 464469.[Crossref] [Google Scholar]
  37. Zarkesh-Esfahani H, Pockley AG, Wu Z, Hellewell PG, Weetman AP, Ross RJ, , 2004. Leptin indirectly activates human neutrophils via induction of TNF-alpha. J Immunol 172: 18091814.[Crossref] [Google Scholar]
  38. Procaccini C, Jirillo E, Matarese G, , 2012. Leptin as an immunomodulator. Mol Aspects Med 33: 3545.[Crossref] [Google Scholar]
  39. Batra A, Okur B, Glauben R, Erben U, Ihbe J, Stroh T, Fedke I, Chang HD, Zeitz M, Siegmund B, , 2010. Leptin: a critical regulator of CD4+ T-cell polarization in vitro and in vivo. Endocrinology 151: 5662.[Crossref] [Google Scholar]
  40. Farooqi IS, Matarese G, Lord GM, Keogh JM, Lawrence E, Agwu C, Sanna V, Jebb SA, Perna F, Fontana S, Lechler RI, DePaoli AM, O'Rahilly S, , 2002. Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J Clin Invest 110: 10931103.[Crossref] [Google Scholar]
  41. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI, , 1998. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394: 897901.[Crossref] [Google Scholar]
  42. Martin-Romero C, Santos-Alvarez J, Goberna R, Sanchez-Margalet V, , 2000. Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell Immunol 199: 1524.[Crossref] [Google Scholar]
  43. Santos-Alvarez J, Goberna R, Sanchez-Margalet V, , 1999. Human leptin stimulates proliferation and activation of human circulating monocytes. Cell Immunol 194: 611.[Crossref] [Google Scholar]
  44. Matarese G, Moschos S, Mantzoros CS, , 2005. Leptin in immunology. J Immunol 174: 31373142.[Crossref] [Google Scholar]
  45. Mancuso P, Gottschalk A, Phare SM, Peters-Golden M, Lukacs NW, Huffnagle GB, , 2002. Leptin-deficient mice exhibit impaired host defense in Gram-negative pneumonia. J Immunol 168: 40184024.[Crossref] [Google Scholar]
  46. Ikejima S, Sasaki S, Sashinami H, Mori F, Ogawa Y, Nakamura T, Abe Y, Wakabayashi K, Suda T, Nakane A, , 2005. Impairment of host resistance to Listeria monocytogenes infection in liver of db/db and ob/ob mice. Diabetes 54: 182189.[Crossref] [Google Scholar]
  47. Wieland CW, Florquin S, Chan ED, Leemans JC, Weijer S, Verbon A, Fantuzzi G, van der Poll T, , 2005. Pulmonary Mycobacterium tuberculosis infection in leptin-deficient ob/ob mice. Int Immunol 17: 13991408.[Crossref] [Google Scholar]
  48. Anstead GM, Chandrasekar B, Zhao W, Yang J, Perez LE, Melby PC, , 2001. Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infect Immun 69: 47094718.[Crossref] [Google Scholar]
  49. Dayakar A, Chandrasekaran S, Veronica J, Maurya R, , 2011. Role of leptin in human visceral leishmaniasis? Med Hypotheses 77: 416418.[Crossref] [Google Scholar]
  50. Shivahare R, Ali W, Vishwakarma P, Natu SM, Puri SK, Gupta S, , 2015. Leptin augments protective immune responses in murine macrophages and enhances potential of miltefosine against experimental visceral leishmaniasis. Acta Trop 150: 3541.[Crossref] [Google Scholar]
  51. Dey R, Meneses C, Salotra P, Kamhawi S, Nakhasi HL, Duncan R, , 2010. Characterization of a Leishmania stage-specific mitochondrial membrane protein that enhances the activity of cytochrome c oxidase and its role in virulence. Mol Microbiol 77: 399414.[Crossref] [Google Scholar]
  52. Duan J, Choi YH, Hartzell D, Della-Fera MA, Hamrick M, Baile CA, , 2007. Effects of subcutaneous leptin injections on hypothalamic gene profiles in lean and ob/ob mice. Obesity (Silver Spring) 15: 26242633.[Crossref] [Google Scholar]
  53. Dey R, Dagur PK, Selvapandiyan A, McCoy JP, Salotra P, Duncan R, Nakhasi HL, , 2013. Live attenuated Leishmania donovani p27 gene knockout parasites are nonpathogenic and elicit long-term protective immunity in BALB/c mice. J Immunol 190: 21382149.[Crossref] [Google Scholar]
  54. Bhattacharya P, Dey R, Dagur PK, Kruhlak M, Ismail N, Debrabant A, Joshi AB, Akue A, Kukuruga M, Takeda K, Selvapandiyan A, McCoy JP, Jr Nakhasi HL, , 2015. Genetically modified live attenuated Leishmania donovani parasites induce innate immunity through classical activation of macrophages that direct the Th1 response in mice. Infect Immun 83: 38003815.[Crossref] [Google Scholar]
  55. Farooqi IS, Wangensteen T, Collins S, Kimber W, Matarese G, Keogh JM, Lank E, Bottomley B, Lopez-Fernandez J, Ferraz-Amaro I, Dattani MT, Ercan O, Myhre AG, Retterstol L, Stanhope R, Edge JA, McKenzie S, Lessan N, Ghodsi M, De Rosa V, Perna F, Fontana S, Barroso I, Undlien DE, O'Rahilly S, , 2007. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N Engl J Med 356: 237247.[Crossref] [Google Scholar]
  56. El-On J, Bazarsky E, Sneir R, , 2007. Leishmania major: in vitro and in vivo anti-leishmanial activity of paromomycin ointment (Leshcutan) combined with the immunomodulator Imiquimod. Exp Parasitol 116: 156162.[Crossref] [Google Scholar]
  57. Trinconi CT, Reimao JQ, Yokoyama-Yasunaka JK, Miguel DC, Uliana SR, , 2014. Combination therapy with tamoxifen and amphotericin B in experimental cutaneous leishmaniasis. Antimicrob Agents Chemother 58: 26082613.[Crossref] [Google Scholar]
  58. Sane SA, Shakya N, Haq W, Gupta S, , 2010. CpG oligodeoxynucleotide augments the antileishmanial activity of miltefosine against experimental visceral leishmaniasis. J Antimicrob Chemother 65: 14481454.[Crossref] [Google Scholar]
  59. Shivahare R, Vishwakarma P, Parmar N, Yadav PK, Haq W, Srivastava M, Gupta S, Kar S, , 2014. Combination of liposomal CpG oligodeoxynucleotide 2006 and miltefosine induces strong cell-mediated immunity during experimental visceral leishmaniasis. PLoS One 9: e94596.[Crossref] [Google Scholar]
  60. Khadem F, Uzonna JE, , 2014. Immunity to visceral leishmaniasis: implications for immunotherapy. Future Microbiol 9: 901915.[Crossref] [Google Scholar]
  61. Conde J, Scotece M, Abella V, Lopez V, Pino J, Gomez-Reino JJ, Gualillo O, , 2014. An update on leptin as immunomodulator. Expert Rev Clin Immunol 10: 11651170.[Crossref] [Google Scholar]
  62. Matarese G, La Cava A, Sanna V, Lord GM, Lechler RI, Fontana S, Zappacosta S, , 2002. Balancing susceptibility to infection and autoimmunity: a role for leptin? Trends Immunol 23: 182187.[Crossref] [Google Scholar]
  63. Hsu A, Aronoff DM, Phipps J, Goel D, Mancuso P, , 2007. Leptin improves pulmonary bacterial clearance and survival in ob/ob mice during pneumococcal pneumonia. Clin Exp Immunol 150: 332339.[Crossref] [Google Scholar]
  64. Buxbaum LU, , 2008. A detrimental role for IgG and FcgammaR in Leishmania mexicana infection. Immunol Res 42: 197209.[Crossref] [Google Scholar]
  65. Raso GM, Pacilio M, Esposito E, Coppola A, Di Carlo R, Meli R, , 2002. Leptin potentiates IFN-gamma-induced expression of nitric oxide synthase and cyclo-oxygenase-2 in murine macrophage J774A.1. Br J Pharmacol 137: 799804.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 09 Nov 2015
  • Accepted : 07 Mar 2016
  • Published online : 06 Jul 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error