Volume 94, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Nchelenge District in Luapula Province, northern Zambia, experiences holoendemic malaria despite implementation of vector control programs. The major vectors that contribute to transmission in this area had not previously been well defined. Three collections performed during the 2012 wet and dry seasons and the 2013 wet season revealed sensu stricto and sensu stricto as the main vectors, where 80–85% of each collection was composed of . Both vectors were found to be highly anthropophilic, and has higher sporozoite infection rates (SIRs) and entomological inoculation rates (EIRs) year-round compared with : SIRs of 1.8–3.0% and 0–2.5%, respectively, and EIRs of 3.7–41.5 infectious bites per 6-month period (ib/p/6mo) and 0–5.9 ib/p/6mo, respectively. Spatial and temporal changes in each vector's dynamics and bionomics were also observed. was the predominant vector in the villages near Kenani Stream in both wet and dry seasons, whereas was found to be the main vector in areas near Lake Mweru during the wet season. The vector data illustrate the need for broader temporal and spatial sampling in Nchelenge and present unique opportunities to further our understanding of malarial transmission and implications for malarial control in high-risk areas.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Kelly-Hope LA, Hemingway J, McKenzie FE, , 2009. Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya. Malar J 8: 268.[Crossref] [Google Scholar]
  2. Coetzee M, Fontenille D, , 2004. Advances in the study of Anopheles funestus, a major vector of malaria in Africa. Insect Biochem Mol Biol 34: 599605.[Crossref] [Google Scholar]
  3. Gillies M, DeMeillon B, , 1968. The Anophelinae South of the Sahara (Ethiopian Zoological Region). Johannesburg, South Africa: South African Institute for Medical Research. [Google Scholar]
  4. Hargreaves K, Koekemoer LL, Brooke BD, Hunt RH, Mthembu J, Coetzee M, , 2000. Anopheles funestus resistant to pyrethroid insecticides in South Africa. Med Vet Entomol 14: 181189.[Crossref] [Google Scholar]
  5. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, Patil AP, Temperley WH, Gething PW, Kabaria CW, Okara RM, Van Boeckel T, Godfray HC, Harbach RE, Hay SI, , 2010. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: occurrence data, distribution maps and bionomic precis. Parasit Vectors 3: 117.[Crossref] [Google Scholar]
  6. Githeko AK, Adungo NI, Karanja DM, Hawley WA, Vulule JM, Seroney IK, Ofulla AV, Atieli FK, Ondijo SO, Genga IO, Odada PK, Situbi PA, Oloo JA, , 1996. Some observations on the biting behavior of Anopheles gambiae s.s., Anopheles arabiensis, and Anopheles funestus and their implications for malaria control. Exp Parasitol 82: 306315.[Crossref] [Google Scholar]
  7. Curtis CF, , 1996. An overview of mosquito biology, behaviour and importance. Ciba Found Symp 200: 37. [Google Scholar]
  8. Ndenga B, Githeko A, Omukunda E, Munyekenye G, Atieli H, Wamai P, Mbogo C, Minakawa N, Zhou G, Yan G, , 2006. Population dynamics of malaria vectors in western Kenya highlands. J Med Entomol 43: 200206.[Crossref] [Google Scholar]
  9. Githeko AK, Ayisi JM, Odada PK, Atieli FK, Ndenga BA, Githure JI, Yan G, , 2006. Topography and malaria transmission heterogeneity in western Kenya highlands: prospects for focal vector control. Malar J 5: 107.[Crossref] [Google Scholar]
  10. Fontaine RE, Pull JH, Payne D, Pradhan GD, Joshi GP, Pearson JA, Thymakis MK, Camacho ME, , 1978. Evaluation of fenitrothion for the control of malaria. Bull World Health Organ 56: 445452. [Google Scholar]
  11. Gimnig JE, Kolczak MS, Hightower AW, Vulule JM, Schoute E, Kamau L, Phillips-Howard PA, ter Kuile FO, Nahlen BL, Hawley WA, , 2003. Effect of permethrin-treated bed nets on the spatial distribution of malaria vectors in western Kenya. Am J Trop Med Hyg 68: 115120. [Google Scholar]
  12. Gimnig JE, Vulule JM, Lo TQ, Kamau L, Kolczak MS, Phillips-Howard PA, Mathenge EM, ter Kuile FO, Nahlen BL, Hightower AW, Hawley WA, , 2003. Impact of permethrin-treated bed nets on entomologic indices in an area of intense year-round malaria transmission. Am J Trop Med Hyg 68: 1622. [Google Scholar]
  13. Killeen GF, Fillinger U, Knols BG, , 2002. Advantages of larval control for African malaria vectors: low mobility and behavioural responsiveness of immature mosquito stages allow high effective coverage. Malar J 1: 8.[Crossref] [Google Scholar]
  14. Killeen GF, McKenzie FE, Foy BD, Schieffelin C, Billingsley PF, Beier JC, , 2000. The potential impact of integrated malaria transmission control on entomologic inoculation rate in highly endemic areas. Am J Trop Med Hyg 62: 545551. [Google Scholar]
  15. Shililu J, Ghebremeskel T, Mengistu S, Fekadu H, Zerom M, Mbogo C, Githure J, Novak R, Brantly E, Beier JC, , 2003. High seasonal variation in entomologic inoculation rates in Eritrea, a semi-arid region of unstable malaria in Africa. Am J Trop Med Hyg 69: 607613. [Google Scholar]
  16. Utzinger J, Tanner M, Kammen DM, Killeen GF, Singer BH, , 2002. Integrated programme is key to malaria control. Nature 419: 431.[Crossref] [Google Scholar]
  17. Norris LC, Norris DE, , 2013. Heterogeneity and changes in inequality of malaria risk after introduction of insecticide-treated bed nets in Macha, Zambia. Am J Trop Med Hyg 88: 710717.[Crossref] [Google Scholar]
  18. Norris LC, Fornadel CM, Hung WC, Pineda FJ, Norris DE, , 2010. Frequency of multiple blood meals taken in a single gonotrophic cycle by Anopheles arabiensis mosquitoes in Macha, Zambia. Am J Trop Med Hyg 83: 3337.[Crossref] [Google Scholar]
  19. Ngufor C, N'Guessan R, Boko P, Odjo A, Vigninou E, Asidi A, Akogbeto M, Rowland M, , 2011. Combining indoor residual spraying with chlorfenapyr and long-lasting insecticidal bed nets for improved control of pyrethroid-resistant Anopheles gambiae: an experimental hut trial in Benin. Malar J 10: 343.[Crossref] [Google Scholar]
  20. Giardina F, Kasasa S, Sie A, Utzinger J, Tanner M, Vounatsou P, , 2014. Effects of vector-control interventions on changes in risk of malaria parasitaemia in sub-Saharan Africa: a spatial and temporal analysis. Lancet Glob Health 2: e601e615.[Crossref] [Google Scholar]
  21. West PA, Protopopoff N, Wright A, Kivaju Z, Tigererwa R, Mosha FW, Kisinza W, Rowland M, Kleinschmidt I, , 2015. Enhanced protection against malaria by indoor residual spraying in addition to insecticide treated nets: is it dependent on transmission intensity or net usage? PLoS One 10: e0115661.[Crossref] [Google Scholar]
  22. Mukonka VM, Chanda E, Haque U, Kamuliwo M, Mushinge G, Chileshe J, Chibwe KA, Norris DE, Mulenga M, Chaponda M, Muleba M, Glass GE, Moss WJ, , 2014. High burden of malaria following scale-up of control interventions in Nchelenge District, Luapula Province, Zambia. Malar J 13: 153.[Crossref] [Google Scholar]
  23. Gillies MT, Coetzee M, , 1987. A Supplement to the Anophelinae of Africa South of the Sahara (Afrotropical Region). Johannesburg, South Africa: South African Institute for Medical Research. [Google Scholar]
  24. Kent RJ, Norris DE, , 2005. Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. Am J Trop Med Hyg 73: 336342. [Google Scholar]
  25. Cohuet A, Simard F, Toto JC, Kengne P, Coetzee M, Fontenille D, , 2003. Species identification within the Anopheles funestus group of malaria vectors in Cameroon and evidence for a new species. Am J Trop Med Hyg 69: 200205. [Google Scholar]
  26. Koekemoer LL, Kamau L, Hunt RH, Coetzee M, , 2002. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg 66: 804811. [Google Scholar]
  27. Scott JA, Brogdon WG, Collins FH, , 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg 49: 520529. [Google Scholar]
  28. Spillings BL, Brooke BD, Koekemoer LL, Chiphwanya J, Coetzee M, Hunt RH, , 2009. A new species concealed by Anopheles funestus Giles, a major malaria vector in Africa. Am J Trop Med Hyg 81: 510515. [Google Scholar]
  29. Favia G, Lanfrancotti A, Spanos L, Siden-Kiamos I, Louis C, , 2001. Molecular characterization of ribosomal DNA polymorphisms discriminating among chromosomal forms of Anopheles gambiae s.s. Insect Mol Biol 10: 1923.[Crossref] [Google Scholar]
  30. Kent RJ, Thuma PE, Mharakurwa S, Norris DE, , 2007. Seasonality, blood feeding behavior, and transmission of Plasmodium falciparum by Anopheles arabiensis after an extended drought in southern Zambia. Am J Trop Med Hyg 76: 267274. [Google Scholar]
  31. Fornadel CM, Norris LC, Glass GE, Norris DE, , 2010. Analysis of Anopheles arabiensis blood feeding behavior in southern Zambia during the two years after introduction of insecticide-treated bed nets. Am J Trop Med Hyg 83: 848853.[Crossref] [Google Scholar]
  32. Snounou G, Viriyakosol S, Zhu XP, Jarra W, Pinheiro L, do Rosario VE, Thaithong S, Brown KN, , 1993. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol 61: 315320.[Crossref] [Google Scholar]
  33. Fornadel CM, Norris LC, Franco V, Norris DE, , 2011. Unexpected anthropophily in the potential secondary malaria vectors Anopheles coustani s.l. and Anopheles squamosus in Macha, Zambia. Vector Borne Zoonotic Dis 11: 11731179.[Crossref] [Google Scholar]
  34. Fornadel CM, Norris LC, Norris DE, , 2010. Centers for Disease Control light traps for monitoring Anopheles arabiensis human biting rates in an area with low vector density and high insecticide-treated bed net use. Am J Trop Med Hyg 83: 838842.[Crossref] [Google Scholar]
  35. Magbity EB, Lines JD, Marbiah MT, David K, Peterson E, , 2002. How reliable are light traps in estimating biting rates of adult Anopheles gambiae s.l. (Diptera: Culicidae) in the presence of treated bed nets? Bull Entomol Res 92: 7176.[Crossref] [Google Scholar]
  36. Mathenge EM, Omweri GO, Irungu LW, Ndegwa PN, Walczak E, Smith TA, Killeen GF, Knols BG, , 2004. Comparative field evaluation of the Mbita trap, the Centers for Disease Control light trap, and the human landing catch for sampling of malaria vectors in western Kenya. Am J Trop Med Hyg 70: 3337. [Google Scholar]
  37. Mboera LE, , 2005. Sampling techniques for adult Afrotropical malaria vectors and their reliability in the estimation of entomological inoculation rate. Tanzan Health Res Bull 7: 117124. [Google Scholar]
  38. Das S, Henning TC, Simubali L, Hamapumbu H, Nzira L, Mamini E, Makuwaza A, Muleba M, Norris DE, Stevenson JC, , 2015. Underestimation of foraging behaviour by standard field methods in malaria vector mosquitoes in southern Africa. Malar J 14: 12.[Crossref] [Google Scholar]
  39. Mwangangi JM, Mbogo CM, Orindi BO, Muturi EJ, Midega JT, Nzovu J, Gatakaa H, Githure J, Borgemeister C, Keating J, Beier JC, , 2013. Shifts in malaria vector species composition and transmission dynamics along the Kenyan coast over the past 20 years. Malar J 12: 13.[Crossref] [Google Scholar]
  40. Mzilahowa T, Hastings IM, Molyneux ME, McCall PJ, , 2012. Entomological indices of malaria transmission in Chikhwawa district, southern Malawi. Malar J 11: 380.[Crossref] [Google Scholar]
  41. Lwetoijera DW, Harris C, Kiware SS, Dongus S, Devine GJ, McCall PJ, Majambere S, , 2014. Increasing role of Anopheles funestus and Anopheles arabiensis in malaria transmission in the Kilombero Valley, Tanzania. Malar J 13: 331.[Crossref] [Google Scholar]
  42. Minakawa N, Sonye G, Mogi M, Yan G, , 2004. Habitat characteristics of Anopheles gambiae s.s. larvae in a Kenyan highland. Med Vet Entomol 18: 301305.[Crossref] [Google Scholar]
  43. Omukunda E, Githeko A, Ndong AM, Mushinzimana E, Yan G, , 2012. Effect of swamp cultivation on distribution of anopheline larval habitats in Western Kenya. J Vector Borne Dis 49: 6171. [Google Scholar]
  44. Wamae PM, Githeko AK, Otieno GO, Kabiru EW, Duombia SO, , 2015. Early biting of the Anopheles gambiae s.s. and its challenges to vector control using insecticide treated nets in western Kenya highlands. Acta Trop 150: 136142.[Crossref] [Google Scholar]
  45. Mwangangi JM, Mbogo CM, Nzovu JG, Githure JI, Yan G, Beier JC, , 2003. Blood-meal analysis for anopheline mosquitoes sampled along the Kenyan coast. J Am Mosq Control Assoc 19: 371375. [Google Scholar]
  46. Pappa V, Reddy M, Overgaard HJ, Abaga S, Caccone A, , 2011. Estimation of the human blood index in malaria mosquito vectors in Equatorial Guinea after indoor antivector interventions. Am J Trop Med Hyg 84: 298301.[Crossref] [Google Scholar]
  47. Killeen GF, Chitnis N, , 2014. Potential causes and consequences of behavioural resilience and resistance in malaria vector populations: a mathematical modelling analysis. Malar J 13: 97.[Crossref] [Google Scholar]
  48. Paaijmans KP, Thomas MB, , 2011. The influence of mosquito resting behaviour and associated microclimate for malaria risk. Malar J 10: 183.[Crossref] [Google Scholar]
  49. Gnanguenon V, Govoetchan R, Agossa FR, Osse R, Oke-Agbo F, Azondekon R, Sovi A, Attolou R, Badirou K, Tokponnon FT, Padonou GG, Akogbeto MC, , 2014. Transmission patterns of Plasmodium falciparum by Anopheles gambiae in Benin. Malar J 13: 444.[Crossref] [Google Scholar]
  50. Guelbeogo WM, Sagnon N, Liu F, Besansky NJ, Costantini C, , 2014. Behavioural divergence of sympatric Anopheles funestus populations in Burkina Faso. Malar J 13: 65.[Crossref] [Google Scholar]
  51. Huho B, Briet O, Seyoum A, Sikaala C, Bayoh N, Gimnig J, Okumu F, Diallo D, Abdulla S, Smith T, Killeen G, , 2013. Consistently high estimates for the proportion of human exposure to malaria vector populations occurring indoors in rural Africa. Int J Epidemiol 42: 235247.[Crossref] [Google Scholar]
  52. Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, Killeen GF, , 2011. Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 10: 80.[Crossref] [Google Scholar]
  53. Seyoum A, Sikaala CH, Chanda J, Chinula D, Ntamatungiro AJ, Hawela M, Miller JM, Russell TL, Briet OJ, Killeen GF, , 2012. Human exposure to anopheline mosquitoes occurs primarily indoors, even for users of insecticide-treated nets in Luangwa Valley, southeast Zambia. Parasit Vectors 5: 101.[Crossref] [Google Scholar]
  54. Cooke MK, Kahindi SC, Oriango RM, Owaga C, Ayoma E, Mabuka D, Nyangau D, Abel L, Atieno E, Awuor S, Drakeley C, Cox J, Stevenson J, , 2015. ‘A bite before bed’: exposure to malaria vectors outside the times of net use in the highlands of western Kenya. Malar J 14: 259.[Crossref] [Google Scholar]
  55. Durnez L, Van Bortel W, Denis L, Roelants P, Veracx A, Trung HD, Sochantha T, Coosemans M, , 2011. False positive circumsporozoite protein ELISA: a challenge for the estimation of the entomological inoculation rate of malaria and for vector incrimination. Malar J 10: 195.[Crossref] [Google Scholar]
  56. Koekemoer LL, Rankoe EM, la Grange JP, Govere J, Coetzee M, , 2001. False detection of Plasmodium falciparum sporozoites in Anopheles marshallii group mosquitoes. J Am Mosq Control Assoc 17: 160165. [Google Scholar]
  57. Lochouarn L, Fontenille D, , 1999. ELISA detection of malaria sporozoites: false-positive results in Anopheles gambiae s.l. associated with bovine bloodmeals. Trans R Soc Trop Med Hyg 93: 101102.[Crossref] [Google Scholar]
  58. Mouatcho JC, Hargreaves K, Koekemoer LL, Brooke BD, Oliver SV, Hunt RH, Coetzee M, , 2007. Indoor collections of the Anopheles funestus group (Diptera: Culicidae) in sprayed houses in northern KwaZulu-Natal, South Africa. Malar J 6: 30.[Crossref] [Google Scholar]
  59. Somboon P, Morakote N, Koottathep S, Trisanarom U, , 1993. Detection of sporozoites of Plasmodium vivax and Plasmodium falciparum in mosquitoes by ELISA: false positivity associated with bovine and swine blood. Trans R Soc Trop Med Hyg 87: 322324.[Crossref] [Google Scholar]
  60. Choi KS, Christian R, Nardini L, Wood OR, Agubuzo E, Muleba M, Munyati S, Makuwaza A, Koekemoer LL, Brooke BD, Hunt RH, Coetzee M, , 2014. Insecticide resistance and role in malaria transmission of Anopheles funestus populations from Zambia and Zimbabwe. Parasit Vectors 7: 464.[Crossref] [Google Scholar]
  61. Marie A, Boissiere A, Tsapi MT, Poinsignon A, Awono-Ambene PH, Morlais I, Remoue F, Cornelie S, , 2013. Evaluation of a real-time quantitative PCR to measure the wild Plasmodium falciparum infectivity rate in salivary glands of Anopheles gambiae . Malar J 12: 224.[Crossref] [Google Scholar]
  62. Burkot TR, Williams JL, Schneider I, , 1984. Identification of Plasmodium falciparum-infected mosquitoes by a double antibody enzyme-linked immunosorbent assay. Am J Trop Med Hyg 33: 783788. [Google Scholar]
  63. Vaughan JA, Noden BH, Beier JC, , 1992. Population dynamics of Plasmodium falciparum sporogony in laboratory-infected Anopheles gambiae . J Parasitol 78: 716724.[Crossref] [Google Scholar]
  64. Fontenille D, Lochouarn L, Diatta M, Sokhna C, Dia I, Diagne N, Lemasson JJ, Ba K, Tall A, Rogier C, Trape JF, , 1997. Four years' entomological study of the transmission of seasonal malaria in Senegal and the bionomics of Anopheles gambiae and A. arabiensis . Trans R Soc Trop Med Hyg 91: 647652.[Crossref] [Google Scholar]
  65. Lefevre T, Gouagna LC, Dabire KR, Elguero E, Fontenille D, Renaud F, Costantini C, Thomas F, , 2009. Beyond nature and nurture: phenotypic plasticity in blood-feeding behavior of Anopheles gambiae s.s. when humans are not readily accessible. Am J Trop Med Hyg 81: 10231029.[Crossref] [Google Scholar]
  66. Moiroux N, Gomez MB, Pennetier C, Elanga E, Djenontin A, Chandre F, Djegbe I, Guis H, Corbel V, , 2012. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 206: 16221629.[Crossref] [Google Scholar]
  67. Fontenille D, Lochouarn L, Diagne N, Sokhna C, Lemasson JJ, Diatta M, Konate L, Faye F, Rogier C, Trape JF, , 1997. High annual and seasonal variations in malaria transmission by anophelines and vector species composition in Dielmo, a holoendemic area in Senegal. Am J Trop Med Hyg 56: 247253. [Google Scholar]
  68. Kelly-Hope LA, McKenzie FE, , 2009. The multiplicity of malaria transmission: a review of entomological inoculation rate measurements and methods across sub-Saharan Africa. Malar J 8: 19.[Crossref] [Google Scholar]
  69. Oyewole IO, Awolola TS, Ibidapo CA, Oduola AO, Okwa OO, Obansa JA, , 2007. Behaviour and population dynamics of the major anopheline vectors in a malaria endemic area in southern Nigeria. J Vector Borne Dis 44: 5664. [Google Scholar]
  70. Muturi EJ, Kamau L, Jacob BG, Muriu S, Mbogo CM, Shililu J, Githure J, Novak RJ, , 2009. Spatial distribution, blood feeding pattern, and role of Anopheles funestus complex in malaria transmission in central Kenya. Parasitol Res 105: 10411046.[Crossref] [Google Scholar]
  71. Mendis C, Jacobsen JL, Gamage-Mendis A, Bule E, Dgedge M, Thompson R, Cuamba N, Barreto J, Begtrup K, Sinden RE, Hogh B, , 2000. Anopheles arabiensis and An. funestus are equally important vectors of malaria in Matola coastal suburb of Maputo, southern Mozambique. Med Vet Entomol 14: 171180.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 09 Oct 2015
  • Accepted : 07 Feb 2016
  • Published online : 01 Jun 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error