1921
Volume 95, Issue 2
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

It is estimated that 5% of Australians over the age of 18 have diabetes, with the number of new cases increasing every year. Type 2 diabetes (T2D) also represents a significant disease burden in the Australian indigenous population, where prevalence is three times greater than that of non-indigenous Australians. Prevalence of T2D has been found to be higher in rural and remote indigenous Australian populations compared with urban indigenous Australian populations. Several studies have also found that body mass index and waist circumference are not appropriate for the prediction of T2D risk in indigenous Australians. Regional and remote areas of Australia are endemic for a variety of mosquito-borne flaviviruses. Studies that have investigated seroprevalence of flaviviruses in remote aboriginal communities have found high proportions of seroconversion. The family Flaviviridae comprises several genera of viruses with non-segmented single-stranded positive sense RNA genomes, and includes the flaviviruses and hepaciviruses. Hepatitis C virus (HCV) has been shown to be associated with insulin resistance and subsequent development of T2D. Flaviviruses and HCV possess conserved proteins and subgenomic RNA structures that may play similar roles in the development of insulin resistance. Although dietary and lifestyle factors are associated with increased risk of developing T2D, the impact of infectious diseases such as arboviruses has not been assessed. Flaviviruses circulating in indigenous Australian communities may play a significant role in inducing glucose intolerance and exacerbating T2D.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.15-0727
2016-08-03
2019-03-20
Loading full text...

Full text loading...

/deliver/fulltext/14761645/95/2/265.html?itemId=/content/journals/10.4269/ajtmh.15-0727&mimeType=html&fmt=ahah

References

  1. AIHW, 2014. Cardiovascular Disease, Diabetes and Chronic Kidney Disease: Australian Facts: Prevalence and Incidence. Canberra, Australia: Australian Institute of Health and Welfare. [Google Scholar]
  2. Minges KE, Zimmet P, Magliano DJ, Dunstan DW, Brown A, Shaw JE, , 2011. Diabetes prevalence and determinants in indigenous Australian populations: a systematic review. Diabetes Res Clin Pract 93: 139149.[Crossref] [Google Scholar]
  3. AIHW, 2012. Diabetes: The Facts. Canberra, Australia: Australian Institute of Health and Welfare. [Google Scholar]
  4. McDermott R, Rowley KG, Lee AJ, Knight S, O'Dea K, , 2000. Increase in prevalence of obesity and diabetes and decrease in plasma cholesterol in a central Australian aboriginal community. Med J Aust 172: 480484. [Google Scholar]
  5. Rowley KG, Daniel M, Skinner K, Skinner M, White GA, O'Dea K, , 2000. Effectiveness of a community-directed ‘healthy lifestyle’ program in a remote Australian aboriginal community. Aust N Z J Public Health 24: 136144.[Crossref] [Google Scholar]
  6. McDermott RA, Li M, Campbell SK, , 2010. Incidence of type 2 diabetes in two indigenous Australian populations: a 6-year follow-up study. Med J Aust 192: 562565. [Google Scholar]
  7. Daniel M, Paquet C, Kelly SJ, Zang G, Rowley KG, McDermott R, O'Dea K, , 2013. Hypertriglyceridemic waist and newly-diagnosed diabetes among remote-dwelling indigenous Australians. Ann Hum Biol 40: 496504.[Crossref] [Google Scholar]
  8. Leyssen P, De Clercq E, Neyts J, , 2000. Perspectives for the treatment of infections with Flaviviridae. Clin Microbiol Rev 1: 6782.[Crossref] [Google Scholar]
  9. Bose S, Ray R, , 2014. Hepatitis C virus infection and insulin resistance. World J Diabetes 5: 5258.[Crossref] [Google Scholar]
  10. Naing C, Mak JW, Ahmed SI, Maung M, , 2012. Relationship between hepatitis C virus infection and type 2 diabetes mellitus: meta-analysis. World J Gastroenterol 18: 16421651.[Crossref] [Google Scholar]
  11. Mehta SH, Brancati FL, Sulkowski MS, Strathdee SA, Szklo M, Thomas DL, , 2000. Prevalence of type 2 diabetes mellitus among persons with hepatitis C virus infection in the United States. Ann Intern Med 133: 592599.[Crossref] [Google Scholar]
  12. Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, Kimura S, Moriya K, Koike K, , 2004. Hepatitis C infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology 126: 840848.[Crossref] [Google Scholar]
  13. Vanni E, Abate ML, Gentilcore E, Hickman I, Cambino R, Cassander M, Smedile A, Ferrannini E, Rizzetto M, Marchesini G, Gastaldelli A, Bugianesi E, , 2009. Sites and mechanisms of insulin resistance in non-obese, non-diabetic patients with chronic hepatitis C. Hepatology 50: 697706.[Crossref] [Google Scholar]
  14. Milner KL, van der Poorten D, Trenell M, Jenkins AB, Xu A, Smythe G, Dore GJ, Zekry A, Weltman M, Fragomeli V, George J, Chisholm DJ, , 2010. Chronic hepatitis C is associated with peripheral rather than hepatic insulin resistance. Gastroenterology 138: e931e933.[Crossref] [Google Scholar]
  15. McLauchlan J, , 2000. Properties of the hepatitis C virus core protein: a structural protein that modulates cellular processes. J Viral Hepat 7: 214.[Crossref] [Google Scholar]
  16. Tingting P, Caiyun F, Zhigang Y, Pangyuan Y, Zhenghong Y, , 2006. Subproteomic analysis of the cellular proteins associated with the 3′ untranslated region of the hepatitis C virus genome in human liver cells. Biochem Biophys Res Commun 347: 683691.[Crossref] [Google Scholar]
  17. Yu KL, Jang SI, You JC, , 2009. Identification of the in vivo interaction between hepatitis C virus core protein and 5′ and 3′ UTR RNA. Virus Res 145: 285292.[Crossref] [Google Scholar]
  18. De Felipe B, Leal M, Soriano-Sarabia N, Gutierrez A, Lopez-Cortes L, Molina-Pinelo S, Vallejo A, , 2009. HCV RNA in peripheral blood cell subsets in HCV-HIV coinfected patients at the end of PegIFN/RBV treatment is associated with virologic relapse. J Viral Hepat 16: 2127.[Crossref] [Google Scholar]
  19. International Diabetes Federation, 2013. International Diabetes Federation Diabetes Atlas, 6th edition. International Diabetes Federation. [Google Scholar]
  20. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenish T, Wint GRW, Simmons CP, Scott TW, Farrar JJ, Hay SI, , 2013. The global distribution and burden of dengue. Nature 496: 504507.[Crossref] [Google Scholar]
  21. Hasanat MA, Ananna MA, Ahmed MU, Alam MN, , 2010. Testing blood glucose may be useful in the management of dengue. Mymensingh Med J 19: 382385. [Google Scholar]
  22. Van den Hurk AF, Nisbet DJ, Foley PN, Ritchie SA, Mackenzie JS, Beebe NW, , 2002. Isolation of arboviruses from mosquitoes (Diptera: Culicidae) collected from the Gulf Plains region of northwest Queensland, Australia. J Med Entomol 39: 786792.[Crossref] [Google Scholar]
  23. MacDonald J, Poindinger M, Mackenzie JS, Russel RC, Doggett S, Broom AK, Phillips D, Potamski J, Gard G, Whelan P, Weir R, Young PR, Gendle D, Maher S, Barnard RT, Hall RA, , 2010. Molecular phylogeny of Edge Hill virus supports its position in the yellow fever virus group and identified a new genetic variant. Evol Bioinform Online 6: 9196. [Google Scholar]
  24. Broom AK, Lindsay MD, Wright AE, Smith DW, Mackenzie JS, , 2003. Epizootic activity of Murray Valley encephalitis and Kunjin viruses in an aboriginal community in southeast Kimberly region of western Australia: results of mosquito fauna and virus isolation studies. Am J Trop Med Hyg 69: 277283. [Google Scholar]
  25. Johansen CA, Nisbet DJ, Zborowski P, van den Hurk AF, Ritchie SA, Mackenzie JS, , 2003. Flavivirus isolations from mosquitoes collected from western Cape York Peninsula, Australia, 1999–2000. J Am Mosq Control Assoc 19: 392396. [Google Scholar]
  26. Prow N, , 2013. The changing epidemiology of Kunjin virus in Australia. Int J Environ Res Public Health 10: 62556272.[Crossref] [Google Scholar]
  27. Prow N, Tan C, Wang W, Hobson-Peters J, Kidd L, Barton A, Wright J, Hall R, Bielefeldt-Ohmann H, , 2013. Natural exposure of horses to mosquito-borne flaviviruses in south-east Queensland, Australia. Int J Environ Res Public Health 10: 44324443.[Crossref] [Google Scholar]
  28. Selvey L, Johansen CA, Broom AK, Antao C, Lindsay MD, Mackenzie JS, Smith DW, , 2014. Rainfall and sentinel chicken seroconversions predict human cases of Murray Valley encephalitis in the north of western Australia. BMC Infect Dis 14: e672.[Crossref] [Google Scholar]
  29. Broom AK, Lindsay MD, Plant AJ, Wright AE, Condon RJ, Mackenzie JS, , 2002. Epizootic activity of Murray Valley encephalitis virus in an aboriginal community in the southeast Kimberly region of western Australia: results of cross-sectional and longitudinal serologic studies. Am J Trop Med Hyg 67: 319323. [Google Scholar]
  30. Roby JA, Pijlman GP, Wilusz J, Khromykh AA, , 2014. Noncoding subgenomic flavivirus RNA: multiple functions in West Nile virus pathogenesis and modulation of host responses. Viruses 6: 404427.[Crossref] [Google Scholar]
  31. Pijlman G, Funk A, Kondratieva N, Leung J, Torres S, van der Aa L, Liu W, Palmerberg A, Shi P, Hall R, Khromykh AA, , 2008. A highly structured, nuclease resistant, noncoding RNA produces by flaviviruses is required for pathogenicity. Cell Host Microbe 4: 579591.[Crossref] [Google Scholar]
  32. Schuessler A, Funk A, Lazear HM, Cooper DA, Torres S, Daffis S, Jha BK, Kumagai Y, Takeuchi O, Hertzog P, Silverman R, Akira S, Barton DJ, Diamond MS, Khromykh AA, , 2012. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J Virol 86: 57085718.[Crossref] [Google Scholar]
  33. Moon SL, Anderson JR, Kumagai Y, Wilusz CJ, Akira S, Khromykh AA, Wilusz J, , 2012. A noncoding RNA produced by arthropod-borne flaviviruses inhibits the cellular exoribonuclease XRN1 and alters host mRNA stability. RNA 18: 20292040.[Crossref] [Google Scholar]
  34. Schnettler E, Sterken MG, Leung JY, Metz SW, Geertsema C, Goldbach RW, Vlak JM, Kohl A, Khromykh AA, Pijlman GP, , 2012. Noncoding flavivirus RNA displays RNA interference suppressor activity in insect and mammalian cells. J Virol 86: 1348613500.[Crossref] [Google Scholar]
  35. Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B, Keduas V, Notredame C, , 2006. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-coffee. Nucleic Acids Res 1: W604W608.[Crossref] [Google Scholar]
  36. Tesh RB, Siirin M, Guzman H, Travassos da Rosa APA, Wu X, Duan T, Lei H, Nunes MR, Xiao SY, , 2005. Persistent West Nile virus infection in the golden hamster: studies on its mechanism and possible implications for other flavivirus infections. J Infect Dis 192: 287295.[Crossref] [Google Scholar]
  37. Donath MY, , 2014. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat Rev Drug Discov 13: 465476.[Crossref] [Google Scholar]
  38. Novak J, Bienertova-Vasku J, Kara T, Novak M, , 2014. MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediators Inflamm 2014: 275867.[Crossref] [Google Scholar]
  39. Ospina-Bedoya M, Campillo-Pedroza N, Franco-Salazar JP, Gallego-Gomez JC, , 2014. Computational identification of dengue virus microRNA-like structures and their cellular targets. Bioinform Biol Insights 8: 169176.[Crossref] [Google Scholar]
  40. Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman GP, Khromykh AA, Asgari S, , 2012. West Nile virus encodes a microRNA-like small RNA in the 3′ untranslated region which up-regulates GATA4 mRNA and facilitates virus replication in mosquito cells. Nucleic Acids Res 40: 22102223.[Crossref] [Google Scholar]
  41. Zhang X, Wang X, Zhu H, Zhu C, Wang Y, Pu WT, Jegga AG, Fan GC, , 2010. Synergistic effects of GATA-4-mediated miR-144/451 cluster in protection against simulated ischemia/reperfusion-induced cardiomyocyte death. J Mol Cell Cardiol 49: 841850.[Crossref] [Google Scholar]
  42. Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, Jeyaseelan K, , 2011. MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes. PLoS One 6: e22839.[Crossref] [Google Scholar]
  43. Gurukumar KR, Priyadarshini D, Patil JA, Singh A, Shah PS, Cecilia D, , 2009. Development of real time PCR for detection and quantitation of dengue viruses. Virol J 6: 10.[Crossref] [Google Scholar]
  44. Tian T, Wang J, Zhou X, , 2015. A review: microRNA detection methods. Org Biomol Chem 13: 22262238.[Crossref] [Google Scholar]
  45. Witkos TM, Koscianska E, Krzyzosiak WJ, , 2011. Practical aspects of microRNA target prediction. Curr Mol Med 11: 93109.[Crossref] [Google Scholar]
  46. Hodgson KA, Govan BL, Walduck AK, Ketheesan N, Morris JL, , 2013. Impaired early cytokine responses at the site of infection in a murine model of type 2 diabetes and melioidosis comorbidity. Infect Immun 81: 470477.[Crossref] [Google Scholar]
  47. Hodgson KA, Govan BL, Ketheesan N, Morris JL, , 2013. Dietary composition of carbohydrates contributes to the development of experimental type 2 diabetes. Endocrine 43: 447451.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0727
Loading
/content/journals/10.4269/ajtmh.15-0727
Loading

Data & Media loading...

  • Received : 07 Oct 2015
  • Accepted : 22 Feb 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error