1921
Volume 95, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

Naturally acquired immunity to presents a changing landscape as malaria control programs and vaccine initiatives are implemented. Determining which immunologic indicators remain surrogates of past infection, as opposed to mediators of protection, led us to compare stability of immune responses across regions with divergent malaria transmission intensities. A repeat cross-sectional study of Kenyan children from a malaria-holoendemic area and an epidemic-prone area was used to examine longitudinal antibody and interferon-gamma (IFN-γ) responses to the 3D7 and FVO variants of merozoite surface protein 1 (MSP1). Antibodies to MSP1 were common in both study populations and did not significantly wane over a 21-month time period. IFN-γ responses were less frequent and rapidly disappeared in children after a prolonged period of no malaria transmission. Antibody and IFN-γ responses rarely correlated with each other; however, MSP1-specific IFN-γ response correlated with lack of concurrent parasitemia of the same genotype, though only statistically significantly in the malaria-holoendemic region (odds ratio = 0.31, 95% confidence interval = 0.12–0.84). This study affirms that antimalarial antibodies are informative for evaluation of history of malaria exposure within individuals, whereas cell-mediated immunity, though short lived under natural exposure conditions, might provide an assessment of recent infection and protection from parasitemia.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.15-0710
2016-09-07
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/95/3/580.html?itemId=/content/journals/10.4269/ajtmh.15-0710&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2014. World Malaria Report. Geneva, Switzerland: World Health Organization. [Google Scholar]
  2. Moonen B, Cohen JM, Snow RW, Slutsker L, Drakeley C, Smith DL, Abeyasinghe RR, Rodriguez MH, Maharaj R, Tanner M, Targett G, , 2010. Operational strategies to achieve and maintain malaria elimination. Lancet 376: 15921603.[Crossref] [Google Scholar]
  3. Riley EM, Stewart VA, , 2013. Immune mechanisms in malaria: new insights in vaccine development. Nat Med 19: 168178.[Crossref] [Google Scholar]
  4. Leder K, Tong S, Weld L, Kain KC, Wilder-Smith A, von Sonnenburg F, Black J, Brown GV, Torresi J, GeoSentinel Surveillance Network, , 2006. Illness in travelers visiting friends and relatives: a review of the GeoSentinel Surveillance Network. Clin Infect Dis 43: 11851193.[Crossref] [Google Scholar]
  5. Pavli A, Maltezou HC, , 2010. Malaria and travellers visiting friends and relatives. Travel Med Infect Dis 8: 161168.[Crossref] [Google Scholar]
  6. Cohen S, Mc GI, Carrington S, , 1961. Gamma-globulin and acquired immunity to human malaria. Nature 192: 733737.[Crossref] [Google Scholar]
  7. Bloland PB, Boriga DA, Ruebush TK, McCormick JB, Roberts JM, Oloo AJ, Hawley W, Lal A, Nahlen B, Campbell CC, , 1999. Longitudinal cohort study of the epidemiology of malaria infections in an area of intense malaria transmission II. Descriptive epidemiology of malaria infection and disease among children. Am J Trop Med Hyg 60: 641648. [Google Scholar]
  8. Marsh K, Kinyanjui S, , 2006. Immune effector mechanisms in malaria. Parasite Immunol 28: 5160.[Crossref] [Google Scholar]
  9. Fowkes FJ, Richards JS, Simpson JA, Beeson JG, , 2010. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Med 7: e1000218.[Crossref] [Google Scholar]
  10. Otsyula N, Angov E, Bergmann-Leitner E, Koech M, Khan F, Bennett J, Otieno L, Cummings J, Andagalu B, Tosh D, Waitumbi J, Richie N, Shi M, Miller L, Otieno W, Otieno GA, Ware L, House B, Godeaux O, Dubois MC, Ogutu B, Ballou WR, Soisson L, Diggs C, Cohen J, Polhemus M, Heppner DG, Jr Ockenhouse CF, Spring MD, , 2013. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP142) administered intramuscularly with adjuvant system AS01. Malar J 12: 29.[Crossref] [Google Scholar]
  11. Dent AE, Chelimo K, Sumba PO, Spring MD, Crabb BS, Moormann AM, Tisch DJ, Kazura JW, , 2009. Temporal stability of naturally acquired immunity to merozoite surface protein-1 in Kenyan adults. Malar J 8: 162.[Crossref] [Google Scholar]
  12. Flanagan KL, Mwangi T, Plebanski M, Odhiambo K, Ross A, Sheu E, Kortok M, Lowe B, Marsh K, Hill AV, , 2003. Ex vivo interferon-gamma immune response to thrombospondin-related adhesive protein in coastal Kenyans: longevity and risk of Plasmodium falciparum infection. Am J Trop Med Hyg 68: 421430. [Google Scholar]
  13. Moormann AM, John CC, Sumba PO, Tisch D, Embury P, Kazura JW, , 2006. Stability of interferon-gamma and interleukin-10 responses to Plasmodium falciparum liver stage antigen-1 and thrombospondin-related adhesive protein in residents of a malaria holoendemic area. Am J Trop Med Hyg 74: 585590. [Google Scholar]
  14. Moormann AM, Sumba PO, Chelimo K, Fang H, Tisch DJ, Dent AE, John CC, Long CA, Vulule J, Kazura JW, , 2013. Humoral and cellular immunity to Plasmodium falciparum merozoite surface protein 1 and protection from infection with blood-stage parasites. J Infect Dis 208: 149158.[Crossref] [Google Scholar]
  15. Wipasa J, Okell L, Sakkhachornphop S, Suphavilai C, Chawansuntati K, Liewsaree W, Hafalla JC, Riley EM, , 2011. Short-lived IFN-gamma effector responses, but long-lived IL-10 memory responses, to malaria in an area of low malaria endemicity. PLoS Pathog 7: e1001281.[Crossref] [Google Scholar]
  16. Udhayakumar V, Anyona D, Kariuki S, Shi YP, Bloland PB, Branch OH, Weiss W, Nahlen BL, Kaslow DC, Lal AA, , 1995. Identification of T and B cell epitopes recognized by humans in the C-terminal 42-kDa domain of the Plasmodium falciparum merozoite surface protein (MSP)-1. J Immunol 154: 60226030. [Google Scholar]
  17. Blackman MJ, Ling IT, Nicholls SC, Holder AA, , 1991. Proteolytic processing of the Plasmodium falciparum merozoite surface protein-1 produces a membrane-bound fragment containing two epidermal growth factor-like domains. Mol Biochem Parasitol 49: 2933.[Crossref] [Google Scholar]
  18. Holder AA, Lockyer MJ, Odink KG, Sandhu JS, Riveros-Moreno V, Nicholls SC, Hillman Y, Davey LS, Tizard ML, Schwarz RT, Robert RF, , 1985. Primary structure of the precursor to the three major surface antigens of Plasmodium falciparum merozoites. Nature 317: 270273.[Crossref] [Google Scholar]
  19. Egan AF, Chappel JA, Burghaus PA, Morris JS, McBride JS, Holder AA, Kaslow DC, Riley EM, , 1995. Serum antibodies from malaria-exposed people recognize conserved epitopes formed by the two epidermal growth factor motifs of MSP119, the carboxy-terminal fragment of the major merozoite surface protein of Plasmodium falciparum . Infect Immun 63: 456466. [Google Scholar]
  20. Holder AA, , 2009. The carboxy-terminus of merozoite surface protein 1: structure, specific antibodies and immunity to malaria. Parasitology 136: 14451456.[Crossref] [Google Scholar]
  21. Pusic KM, Hashimoto CN, Lehrer A, Aniya C, Clements DE, Hui GS, , 2011. T cell epitope regions of the P. falciparum MSP1-33 critically influence immune responses and in vitro efficacy of MSP1-42 vaccines. PLoS One 6: e24782.[Crossref] [Google Scholar]
  22. Moormann AM, Chelimo K, Sumba OP, Lutzke ML, Ploutz-Snyder R, Newton D, Kazura J, Rochford R, , 2005. Exposure to holoendemic malaria results in elevated Epstein-Barr virus loads in children. J Infect Dis 191: 12331238.[Crossref] [Google Scholar]
  23. ter Kuile FO, Terlouw DJ, Phillips-Howard PA, Hawley WA, Friedman JF, Kolczak MS, Kariuki SK, Shi YP, Kwena AM, Vulule JM, Nahlen BL, , 2003. Impact of permethrin-treated bed nets on malaria and all-cause morbidity in young children in an area of intense perennial malaria transmission in western Kenya: cross-sectional survey. Am J Trop Med Hyg 68: 100107. [Google Scholar]
  24. Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC, , 2006. Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J 5: 78.[Crossref] [Google Scholar]
  25. Snider CJ, Cole SR, Chelimo K, Sumba PO, Macdonald PD, John CC, Meshnick SR, Moormann AM, , 2012. Recurrent Plasmodium falciparum malaria infections in Kenyan children diminish T-cell immunity to Epstein-Barr virus lytic but not latent antigens. PLoS One 7: e31753.[Crossref] [Google Scholar]
  26. Piriou E, Kimmel R, Chelimo K, Middeldorp JM, Odada PS, Ploutz-Snyder R, Moormann AM, Rochford R, , 2009. Serological evidence for long-term Epstein-Barr virus reactivation in children living in a holoendemic malaria region of Kenya. J Med Virol 81: 10881093.[Crossref] [Google Scholar]
  27. Singh S, Miura K, Zhou H, Muratova O, Keegan B, Miles A, Martin LB, Saul AJ, Miller LH, Long CA, , 2006. Immunity to recombinant Plasmodium falciparum merozoite surface protein 1 (MSP1): protection in Aotus nancymai monkeys strongly correlates with anti-MSP1 antibody titer and in vitro parasite-inhibitory activity. Infect Immun 74: 45734580.[Crossref] [Google Scholar]
  28. Spring MD, Chelimo K, Tisch DJ, Sumba PO, Rochford R, Long CA, Kazura JW, Moormann AM, , 2010. Allele specificity of gamma interferon responses to the carboxyl-terminal region of Plasmodium falciparum merozoite surface protein 1 by Kenyan adults with naturally acquired immunity to malaria. Infect Immun 78: 44314441.[Crossref] [Google Scholar]
  29. Terrientes ZI, Vergara J, Kramer K, Herrera S, Chang SP, , 2005. Restricted genetic diversity of Plasmodium falciparum major merozoite surface protein 1 in isolates from Colombia. Am J Trop Med Hyg 73: 5561. [Google Scholar]
  30. Badu K, Afrane YA, Larbi J, Stewart VA, Waitumbi J, Angov E, Ong'echa JM, Perkins DJ, Zhou G, Githeko A, Yan G, , 2012. Marked variation in MSP-119 antibody responses to malaria in western Kenyan highlands. BMC Infect Dis 12: 50.[Crossref] [Google Scholar]
  31. Supargiyono S, Bretscher MT, Wijayanti MA, Sutanto I, Nugraheni D, Rozqie R, Kosasih AA, Sulistyawati S, Hawley WA, Lobo NF, Cook J, Drakeley CJ, , 2013. Seasonal changes in the antibody responses against Plasmodium falciparum merozoite surface antigens in areas of differing malaria endemicity in Indonesia. Malar J 12: 444.[Crossref] [Google Scholar]
  32. White MT, Griffin JT, Akpogheneta O, Conway DJ, Koram KA, Riley EM, Ghani AC, , 2014. Dynamics of the antibody response to Plasmodium falciparum infection in African children. J Infect Dis 210: 11151122.[Crossref] [Google Scholar]
  33. Sutton PL, Clark EH, Silva C, Branch OH, , 2010. The Plasmodium falciparum merozoite surface protein-1 19 KD antibody response in the Peruvian Amazon predominantly targets the non-allele specific, shared sites of this antigen. Malar J 9: 3.[Crossref] [Google Scholar]
  34. Snow RW, Omumbo JA, Lowe B, Molyneux CS, Obiero JO, Palmer A, Weber MW, Pinder M, Nahlen B, Obonyo C, Newbold C, Gupta S, Marsh K, , 1997. Relation between severe malaria morbidity in children and level of Plasmodium falciparum transmission in Africa. Lancet 349: 16501654.[Crossref] [Google Scholar]
  35. Lusingu JP, Vestergaard LS, Mmbando BP, Drakeley CJ, Jones C, Akida J, Savaeli ZX, Kitua AY, Lemnge MM, Theander TG, , 2004. Malaria morbidity and immunity among residents of villages with different Plasmodium falciparum transmission intensity in north-eastern Tanzania. Malar J 3: 26.[Crossref] [Google Scholar]
  36. Kinyanjui SM, Conway DJ, Lanar DE, Marsh K, , 2007. IgG antibody responses to Plasmodium falciparum merozoite antigens in Kenyan children have a short half-life. Malar J 6: 82.[Crossref] [Google Scholar]
  37. Wipasa J, Suphavilai C, Okell LC, Cook J, Corran PH, Thaikla K, Liewsaree W, Riley EM, Hafalla JC, , 2010. Long-lived antibody and B cell memory responses to the human malaria parasites, Plasmodium falciparum and Plasmodium vivax . PLoS Pathog 6: e1000770.[Crossref] [Google Scholar]
  38. Ondigo BN, Hodges JS, Ireland KF, Magak NG, Lanar DE, Dutta S, Narum DL, Park GS, Ofulla AV, John CC, , 2014. Estimation of recent and long-term malaria transmission in a population by antibody testing to multiple Plasmodium falciparum antigens. J Infect Dis 210: 11231132.[Crossref] [Google Scholar]
  39. Oduro AR, Conway DJ, Schellenberg D, Satoguina J, Greenwood BM, Bojang KA, , 2013. Seroepidemiological and parasitological evaluation of the heterogeneity of malaria infection in the Gambia. Malar J 12: 222.[Crossref] [Google Scholar]
  40. Olotu A, Fegan G, Wambua J, Nyangweso G, Ogada E, Drakeley C, Marsh K, Bejon P, , 2012. Estimating individual exposure to malaria using local prevalence of malaria infection in the field. PLoS One 7: e32929.[Crossref] [Google Scholar]
  41. Stewart L, Gosling R, Griffin J, Gesase S, Campo J, Hashim R, Masika P, Mosha J, Bousema T, Shekalaghe S, Cook J, Corran P, Ghani A, Riley EM, Drakeley C, , 2009. Rapid assessment of malaria transmission using age-specific sero-conversion rates. PLoS One 4: e6083.[Crossref] [Google Scholar]
  42. Jagannathan P, , 2015. IFNγ responses to pre-erythrocytic and blood-stage malaria antigens exhibit differential associations with past exposure and subsequent protection. J Infect Dis 211: 19871996.[Crossref] [Google Scholar]
  43. Moormann AM, , 2009. How might infant and paediatric immune responses influence malaria vaccine efficacy? Parasite Immunol 31: 547559.[Crossref] [Google Scholar]
  44. Schwenk RJ, Richie TL, , 2011. Protective immunity to pre-erythrocytic stage malaria. Trends Parasitol 27: 306314.[Crossref] [Google Scholar]
  45. Burchill MA, Tamburini BA, Pennock ND, White JT, Kurche JS, Kedl RM, , 2013. T cell vaccinology: exploring the known unknowns. Vaccine 31: 297305.[Crossref] [Google Scholar]
  46. Illingworth J, Butler NS, Roetynck S, Mwacharo J, Pierce SK, Bejon P, Crompton PD, Marsh K, Ndungu FM, , 2013. Chronic exposure to Plasmodium falciparum is associated with phenotypic evidence of B and T cell exhaustion. J Immunol 190: 10381047.[Crossref] [Google Scholar]
  47. John CC, O'Donnell RA, Sumba PO, Moormann AM, de Koning-Ward TF, King CL, Kazura JW, Crabb BS, , 2004. Evidence that invasion-inhibitory antibodies specific for the 19-kDa fragment of merozoite surface protein-1 (MSP-119) can play a protective role against blood-stage Plasmodium falciparum infection in individuals in a malaria endemic area of Africa. J Immunol 173: 666672.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0710
Loading
/content/journals/10.4269/ajtmh.15-0710
Loading

Data & Media loading...

Supplementary PDF

  • Received : 29 Sep 2015
  • Accepted : 02 Jun 2016
  • Published online : 07 Sep 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error