1921
Volume 94, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

This study examined household risk factors and prevalence, abundance, and distribution of immature and , and their association with socioeconomic and ecological factors at urban zonal and household levels in the city of Dhaka, Bangladesh. During the 2011 monsoon, 826 households in 12 randomly selected administrative wards were surveyed for vector mosquitoes. Results revealed that the abundance and distribution of immature and , and pupae-per-person indices did not vary significantly among the zones with varied socioeconomic status. Of 35 different types of identified wet containers, 30 were infested, and among the 23 pupae-positive container types, nine were defined as the “most productive” for pupae including: disposable plastic containers (12.2% of 550), sealable plastic barrels (12.0%), tires (10.4%), abandoned plastic buckets (9.6%), flower tub and trays (8.5%), refrigerator trays (6.5%), plastic bottles (6.4%), clay pots (4.9%), and water tanks (1.6%). When the function of the containers was assessed, ornamental, discarded, and household repairing and reconstruction-related container categories were found significantly associated with the number of pupae in the households. The purpose of storing water and income variables were significant predictors of possession of containers that were infested by vector mosquitoes.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Loading

Article metrics loading...

The graphs shown below represent data from March 2017
/content/journals/10.4269/ajtmh.15-0639
2016-06-01
2019-01-18
Loading full text...

Full text loading...

/deliver/fulltext/14761645/94/6/1223.html?itemId=/content/journals/10.4269/ajtmh.15-0639&mimeType=html&fmt=ahah

References

  1. WHO, 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control. Geneva, Switzerland: World Health Organization and Special Programme for Research and Training in Tropical Diseases. [Google Scholar]
  2. Banu S, Hu W, Hurst C, Guo Y, Islam MZ, Tong S, , 2012. Space-time clusters of dengue fever in Bangladesh. Trop Med Int Health 17: 10861091.[Crossref] [Google Scholar]
  3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI, , 2013. The global distribution and burden of dengue. Nature 496: 504507.[Crossref] [Google Scholar]
  4. Chan KL, , 1985. Singapore's Dengue Haemorrhagic Fever Control Program: A Case Study on the Successful Control of Aedes aegypti and Aedes albopictus Using Mainly Environmental Measures as a Part of Integrated Vector Control. Tokyo, Japan: Southeast Asían Medical Information Center. [Google Scholar]
  5. Ooi EE, Goh KT, Gubler DJ, , 2006. Dengue prevention and 35 years of vector control in Singapore. Emerg Infect Dis 12: 887893.[Crossref] [Google Scholar]
  6. Guzman MG, Kouri G, , 2002. Dengue: an update. Lancet Infect Dis 2: 3342.[Crossref] [Google Scholar]
  7. Spiegel J, Bennett S, Hattersley L, Hayden MH, Kittayapong P, Nalim S, Wang DNC, Zielinski-Gutiérrez E, Gubler D, , 2005. Barriers and bridges to prevention and control of dengue: the need for a social-ecological approach. EcoHealth 2: 273290.[Crossref] [Google Scholar]
  8. Maciel-de-Freitas R, Avendanho FC, Santos R, Sylvestre G, Araújo SC, Lima JBP, Martins AJ, Coelho GE, Valle D, , 2014. Undesirable consequences of insecticide resistance following Aedes aegypti control activities due to a dengue outbreak. PLoS One 9: e92424.[Crossref] [Google Scholar]
  9. Gubler DJ, Clark GG, , 1996. Community involvement in the control of Aedes aegypti . Acta Trop 61: 169179.[Crossref] [Google Scholar]
  10. Arias J, , 2002. El dengue en Cuba. Rev Panam Salud Publica 11: 221222.[Crossref] [Google Scholar]
  11. Spiegel JM, Bonet M, Ibarra AM, Pagliccia N, Ouellette V, Yassi A, , 2007. Social and environmental determinants of Aedes aegypti infestation in central Havana: results of a case-control study nested in an integrated dengue surveillance programme in Cuba. Trop Med Int Health 12: 503510.[Crossref] [Google Scholar]
  12. Smith DL, Perkins TA, Tusting LS, Scott TW, Lindsay SW, , 2013. Mosquito population regulation and larval source management in heterogeneous environments. PLoS One 8: e71247.[Crossref] [Google Scholar]
  13. World Bank, 2007. Dhaka: Improving Living Conditions for the Urban Poor. Sustainable Development Unit, South Asia Region, Report No. 35824-BD. Washington, DC: World Bank. [Google Scholar]
  14. Unicef, 2013. Dhaka 9th of World's 21 Mega Cities. South Asia Environment Portal. Available at: http://sa.indiaenvironmentportal.org.in/content/355088/dhaka-9th-of-worlds-21-mega-cities/. Accessed August 15, 2015. [Google Scholar]
  15. Ali M, Wagatsuma Y, Emch M, Breiman RF, , 2003. Use of a geographic information system for defining spatial risk for dengue transmission in Bangladesh: role for Aedes albopictus in an urban outbreak. Am J Trop Med Hyg 69: 634640. [Google Scholar]
  16. Seng CM, Setha T, Nealon J, Socheat D, , 2009. Pupal sampling for Aedes aegypti (L.) surveillance and potential stratification of dengue high-risk areas in Cambodia. Trop Med Int Health 14: 12331240.[Crossref] [Google Scholar]
  17. Focks DA, Brenner RJ, Hayes J, Daniels E, , 2000. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts. Am J Trop Med Hyg 62: 1118. [Google Scholar]
  18. Focks DA, Alexander N, , 2006. Multicountry Study of Aedes aegypti Pupal Productivity Survey Methodology: Findings and Recommendations. Geneva, Switzerland: World Health Organization and Special Programme for Research and Training in Tropical Diseases. [Google Scholar]
  19. Barrera R, Amador M, Clark GG, , 2006. Use of pupal survey technique for measuring Aedes aegypti (Diptera: Culicidae) productivity in Puerto Rico. Am J Trop Med Hyg 74: 290302. [Google Scholar]
  20. Focks DA, Chadee DD, , 1997. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am J Trop Med Hyg 56: 159167. [Google Scholar]
  21. Barrera R, Amador M, Clark GG, , 2006. Ecological factors influencing Aedes aegypti (Diptera: Culicidae) productivity in artificial containers in Salinas, Puerto Rico. J Med Entomol 43: 484492.[Crossref] [Google Scholar]
  22. WHO, 2011. Operational Guide for Assessing the Productivity of Aedes aegypti Breeding Sites. Geneva, Switzerland: World Health Organization and Special Programme for Research and Training in Tropical Diseases. [Google Scholar]
  23. Stewart Ibarra AM, Ryan SJ, Beltrán E, Mejía R, Silva M, Muñoz A, , 2013. Dengue vector dynamics (Aedes aegypti) influenced by climate and social factors in Ecuador: implications for targeted control. PLoS One 8: e78263.[Crossref] [Google Scholar]
  24. Barrera R, Amador M, MacKay A, , 2011. Population dynamics of Aedes aegypti and dengue as influenced by weather and human behavior in San Juan, Puerto Rico. PLoS Negl Trop Dis 5: e1378.[Crossref] [Google Scholar]
  25. Ferdousi F, Yoshimatsu S, Ma E, Sohel N, Wagatsuma Y, , 2015. Identification of essential containers for Aedes larval breeding to control dengue in Dhaka, Bangladesh. Trop Med Health 43: 253264.[Crossref] [Google Scholar]
  26. Unlu I, Farajollahi A, Healy SP, Crepeau T, Bartlett-Healy K, Williges E, Strickman D, Clark GG, Gaugler R, Fonseca DM, , 2011. Area-wide management of Aedes albopictus: choice of study sites based on geospatial characteristics, socioeconomic factors and mosquito populations. Pest Manag Sci 67: 965974.[Crossref] [Google Scholar]
  27. Brunkard JM, Lopez JLR, Ramirez J, Cifuentes E, Rothenberg SJ, Hunsperger EA, Moore CG, Brussolo RM, Villarreal NA, Haddad BM, , 2007. Dengue fever seroprevalence and risk factors, Texas-Mexico border, 2004. Emerg Infect Dis 13: 14771483.[Crossref] [Google Scholar]
  28. Braks MAH, Honorio NA, Lourenco-De-Oliveira R, Juliano SA, Lounibos LP, , 2003. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J Med Entomol 40: 785794.[Crossref] [Google Scholar]
  29. Mondini A, Chiaravalloti-Neto F, , 2008. Spatial correlation of incidence of dengue with socioeconomic, demographic and environmental variables in a Brazilian city. Sci Total Environ 393: 241248.[Crossref] [Google Scholar]
  30. Dowling Z, Ladeau SL, Armbruster P, Biehler D, Leisnham PT, , 2013. Socioeconomic status affects mosquito (Diptera: Culicidae) larval habitat type availability and infestation level. J Med Entomol 50: 764772.[Crossref] [Google Scholar]
  31. Ferreira AC, Chiaravalloti-Neto F, , 2007. Infestation on an urban area by Aedes aegypti and relation with socioeconomic levels. Rev Saude Publica 41: 915922.[Crossref] [Google Scholar]
  32. Teixeira MG, Barreto ML, Costa MCN, Ferreira LDA, Vasconcelos PFC, Cairncross S, , 2002. Dynamics of dengue virus circulation: a silent epidemic in a complex urban area. Trop Med Int Health 7: 757762.[Crossref] [Google Scholar]
  33. Rios-Velasquez CM, Codeco CT, Honorio NA, Sabroza PS, Moresco M, Cunha ICL, Levino A, Toledo LM, Luz SLB, , 2007. Distribution of dengue vectors in neighborhoods with different urbanization types of Manaus, state of Amazonas, Brazil. Mem Inst Oswaldo Cruz 102: 617623.[Crossref] [Google Scholar]
  34. Unicef, 2012. State of the World's Children 2012: Children in an Urban World. New York, NY: United Nations Children's Emergency Fund. [Google Scholar]
  35. Bangladesh Bureau of Statistics (BBS), 2010. Statistical Pocket Book of Bangladesh. Dhaka, Bangladesh: Government of Bangladesh. [Google Scholar]
  36. Needham RD, de Loe RC, , 1990. The policy Delphi: purpose, structure, and application. Can Geogr 34: 133142.[Crossref] [Google Scholar]
  37. Karim MN, Munshi SU, Anwar N, Alam MS, , 2012. Climatic factors influencing dengue cases in Dhaka city: a model for dengue prediction. Indian J Med Res 136: 3239. [Google Scholar]
  38. Jeffery JA, Clements ACA, Nguyem YT, Nguyen LH, Tran SH, Le NT, Vu NS, Ryan PA, Kay BH, , 2012. Water level flux in household containers in Vietnam: a key determinant of Aedes aegypti population dynamics. PLoS One 7: e39067.[Crossref] [Google Scholar]
  39. Arduino MDB, , 2014. Assessment of Aedes aegypti pupal productivity during the dengue vector control program in coastal urban centre of Sao Paulo state, Brazil. J Insects 2014: 19.[Crossref] [Google Scholar]
  40. Focks DA, , 2003. A Review of Entomological Sampling Methods and Indicators for Dengue Vectors. Geneva, Switzerland: World Health Organization. [Google Scholar]
  41. Consoli RAGB, de Oliveira RL, , 1994. Principais Mosquitos de Importância Sanitária No Brasil. Rio de Janeiro, Brazil: Editora Fiocruz.[Crossref] [Google Scholar]
  42. Kroeger A, Lenhart A, Ochoa M, Villegas E, Levy M, Alexander N, McCall PJ, , 2006. Effective control of dengue vectors with curtains and water container covers treated with insecticide in Mexico and Venezuela: cluster randomised trials. BMJ 332: 12471252.[Crossref] [Google Scholar]
  43. Vanwambeke SO, van Benthem BHB, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, Lambin EF, Somboon P, , 2006. Multi-level analysis of spatial and temporal determinants for dengue infection. Int J Health Geogr 5: 116.[Crossref] [Google Scholar]
  44. Yoon I-K, Getis A, Aldstadt J, Rothman AL, Tannitisupawong D, Koenraadt CJM, Fansiri T, Jones JW, Morrison AC, Jarman RG, Nisalak A, Mammen MP, Jr Thammapalo S, Srikiatkhachorn A, Green S, Libraty DH, Gibbons RV, Endy T, Pimgate C, Scott TW, , 2012. Fine scale spatiotemporal clustering of dengue virus transmission in children and Aedes aegypti in rural Thai villages. PLoS Negl Trop Dis 6: e1730.[Crossref] [Google Scholar]
  45. Davern M, McAlpine D, Beebe TJ, Ziegenfuss J, Rockwood T, Call KT, , 2010. Are lower response rates hazardous to your health survey? An analysis of three state telephone health surveys. Health Serv Res 45: 13241344.[Crossref] [Google Scholar]
  46. Rea LM, Parker RA, , 1992. Designing and Conducting Survey Research: A Comprehensive Guide. San Francisco, CA: Jossey-Bass. [Google Scholar]
  47. Roth PL, Be Vier CA, , 1998. Response rates in HRM/OB survey research: norms and correlates, 1990–1994. J Manag 24: 97117. [Google Scholar]
  48. Banks N, , 2008. A tale of two wards: political participation and the urban poor in Dhaka city. Environ Urban 20: 361375.[Crossref] [Google Scholar]
  49. Akbar MHD, Minnery JR, van Horen B, Smith P, , 2007. Community water supply for the urban poor in developing countries: the case of Dhaka, Bangladesh. Habitat Int 31: 2435.[Crossref] [Google Scholar]
  50. Ehsan MM, Ovy EG, Shariar KF, Ferdous SM, , 2012. A novel approach of electrification of the high rise buildings at Dhaka City during load shedding hours. Int J Renew Energy Res 2: 123130. [Google Scholar]
  51. Dhar-Chowdhury P, Haque CE, Driedger SM, Hossain S, , 2014. Community perspectives on dengue transmission in the city of Dhaka, Bangladesh. Int Health 6: 306316.[Crossref] [Google Scholar]
  52. Dhar-Chowdhury P, Haque CE, Driedger SM, , 2015. Dengue disease risk mental models in the city of Dhaka, Bangladesh: juxtapositions and gaps between the public and experts. Risk Anal. doi:10.1111/risa.12501. [Google Scholar]
  53. Barbazan P, Tuntaprasart W, Souris M, Demoraes F, Nitatpattana N, Boonyuan W, Ganzalez J-P, , 2008. Assessment of a new strategy, based on Aedes aegypti (L.) pupal productivity, for the surveillance and control of dengue transmission in Thailand. Ann Trop Med Parasitol 102: 161171.[Crossref] [Google Scholar]
  54. Romero-Vivas CME, Arango-Padilla P, Falconar AKI, , 2006. Pupal productivity surveys to identify the key container habitats of Aedes aegypti (L.) in Barranquilla, the principal seaport of Colombia. Ann Trop Med Parasitol 100 (Suppl 1): 8795.[Crossref] [Google Scholar]
  55. LaCon G, Morrison AC, Astete H, Stoddard ST, Paz-Solden VA, Elder JP, Halsey ES, Scott TW, Kitron U, Vazquez-Prokopec GM, , 2014. Shifting patterns of Aedes aegypti fine scale spatial clustering in Iquitos, Peru. PLoS Negl Trop Dis 8: e3038.[Crossref] [Google Scholar]
  56. Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, Kittayapong P, Edman JD, , 2000. Longitudinal studies of Aedes aegypti (Diptera: Culicidae) collected in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89101.[Crossref] [Google Scholar]
  57. Barrera R, Amador M, Diaz A, Smith J, Munoz-Jordan JL, Rosario Y, , 2008. Unusual productivity of Aedes aegypti in septic tanks and its implications for dengue control. Med Vet Entomol 22: 6269.[Crossref] [Google Scholar]
  58. Kay BH, Ryan PA, Russell BM, Holt JS, Lyons SA, Foley PN, , 2000. The importance of subterranean mosquito habitat to arbovirus vector control strategies in north Queensland, Australia. J Med Entomol 37: 846853.[Crossref] [Google Scholar]
  59. Montgomery BL, Ritchie SA, , 2002. Roof gutters: a key container for Aedes aegypti and Ochlerotatus notoscriptus (Diptera: Culicidae) in Australia. Am J Trop Med Hyg 67: 244246. [Google Scholar]
  60. Montgomery BL, Ritchie SA, Hart AJ, Long SA, Walsh ID, , 2004. Subsoil drain sumps are a key container for Aedes aegypti in Cairns, Australia. J Am Mosq Control Assoc 20: 365369. [Google Scholar]
  61. Russell BM, McBride WJH, Mullner H, Kay BH, , 2002. Epidemiological significance of subterranean Aedes aegypti (Diptera: Culicidae) breeding sites to dengue virus infection in Charters Towers, 1993. J Med Entomol 39: 143145.[Crossref] [Google Scholar]
  62. Manrique-Saide P, Uc V, Prado C, Carmona C, Vadillo J, Chan R, Dzib-Florez S, Che-Mendoza A, Barrera-Perez M, Sanchez EC, Arredondo-Jimenez JI, , 2012. Storm sewers as larval habitats for Aedes aegypti and Culex spp. in a neighborhood of Merida, Mexico. J Am Mosq Control Assoc 28: 255257.[Crossref] [Google Scholar]
  63. Morrison AC, Zielinski-Gutierrez E, Scott TW, Rosenberg R, , 2008. Defining challenges and proposing solutions for control of the virus vector Aedes aegypti . PLoS Med 5: e68.[Crossref] [Google Scholar]
  64. Scott TW, Morrison AC, , 2010. Vector dynamics and transmission of dengue virus: implications for dengue surveillance and prevention strategies: vector dynamics and dengue prevention. Curr Top Microbiol Immunol 338: 115128. [Google Scholar]
  65. Campbell KM, Haldeman K, Lehnig C, Munayco CV, Halsey ES, Laguna-Torres VA, Yagui M, Morrison AC, Lin CD, Scott TW, , 2015. Weather regulates location, timing, and intensity of dengue virus transmission between humans and mosquitoes. PLoS Negl Trop Dis 9: e0003957.[Crossref] [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0639
Loading
/content/journals/10.4269/ajtmh.15-0639
Loading

Data & Media loading...

Supplementary PDF

  • Received : 01 Sep 2015
  • Accepted : 29 Feb 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error