1921
Volume 94, Issue 4
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

Long-lasting insecticidal nets and indoor residual spraying have contributed to a decline in malaria over the last decade, but progress is threatened by the development of physiological and behavioral resistance of mosquitoes against insecticides. Acknowledging the need for alternative vector control tools, we quantified the effects of eave screening in combination with a push-pull system based on the simultaneous use of a repellent (push) and attractant-baited traps (pull). Field experiments in western Kenya showed that eave screening, whether used in combination with an attractant-baited trap or not, was highly effective in reducing house entry by malaria mosquitoes. The magnitude of the effect varied for different mosquito species and between two experiments, but the reduction in house entry was always considerable (between 61% and 99%). The use of outdoor, attractant-baited traps alone did not have a significant impact on mosquito house entry but the high number of mosquitoes trapped outdoors indicates that attractant-baited traps could be used for removal trapping, which would enhance outdoor as well as indoor protection against mosquito bites. As eave screening was effective by itself, addition of a repellent was of limited value. Nevertheless, repellents may play a role in reducing outdoor malaria transmission in the peridomestic area.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.15-0632
2016-04-06
2017-09-21
Loading full text...

Full text loading...

/deliver/fulltext/14761645/94/4/868.html?itemId=/content/journals/10.4269/ajtmh.15-0632&mimeType=html&fmt=ahah

References

  1. World Health Organization, 2015. World Malaria Report 2014. Geneva, Switzerland: World Health Organization.
  2. Murray CJL, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, Fullman N, Naghavi M, Lozano R, Lopez AD, , 2012. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379: 413431.[Crossref]
  3. Killeen GF, , 2014. Characterizing, controlling and eliminating residual malaria transmission. Malar J 13: 330.[Crossref]
  4. Durnez L, Coosemans M, Manguin S, , 2013. Residual transmission of malaria: an old issue for new approaches. , ed. Anopheles Mosquitoes—New Insights into Malaria Vectors. InTech.
  5. Hemingway J, Ranson H, , 2000. Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45: 371391.[Crossref]
  6. Ranson H, N'Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V, , 2011. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27: 9198.[Crossref]
  7. Toé KH, Jones CM, N'Fale S, Ismail HM, Dabire RK, Ranson H, , 2014. Increased pyrethroid resistance in malaria vectors and decreased bed net effectiveness, Burkina Faso. Emerg Infect Dis 20: 16911696.[Crossref]
  8. Mawejje HD, Wilding CS, Rippon EJ, Hughes A, Weetman D, Donnelly MJ, , 2013. Insecticide resistance monitoring of field-collected Anopheles gambiae s.l. populations from Jinja, eastern Uganda, identifies high levels of pyrethroid resistance. Med Vet Entomol 27: 276283.[Crossref]
  9. Kanza JPB, El Fahime E, Alaoui S, Essassi EM, Brooke B, Malafu AN, Tezzo FW, , 2012. Pyrethroid, DDT and malathion resistance in the malaria vector Anopheles gambiae from the Democratic Republic of Congo. Trans R Soc Trop Med Hyg 107: 814.[Crossref]
  10. Ochomo E, Bayoh MN, Brogdon WG, Gimnig JE, Ouma C, Vulule JM, Walker ED, , 2013. Pyrethroid resistance in Anopheles gambiae s.s. and Anopheles arabiensis in western Kenya: phenotypic, metabolic and target site characterizations of three populations. Med Vet Entomol 27: 156164.[Crossref]
  11. Abilio AP, Kleinschmidt I, Rehman AM, Cuamba N, Ramdeen V, Mthembu DS, Coetzer S, Maharaj R, Wilding CS, Steven A, Coleman M, Hemingway J, Coleman M, , 2011. The emergence of insecticide resistance in central Mozambique and potential threat to the successful indoor residual spraying malaria control programme. Malar J XX: 110.[Crossref]
  12. Chanda E, Hemingway J, Kleinschmidt I, Rehman AM, Ramdeen V, Phiri FN, Coetzer S, Mthembu D, Shinondo CJ, Chizema-Kawesha E, Kamuliwo M, Mukonka V, Baboo KS, Coleman M, , 2011. Insecticide resistance and the future of malaria control in Zambia. PLoS One 6: e24336.[Crossref]
  13. Cook SM, Khan ZR, Pickett JA, , 2007. The use of push-pull strategies in integrated pest management. Annu Rev Entomol 52: 375400.[Crossref]
  14. Khan Z, Midega C, Pittchar J, Pickett J, Bruce T, , 2011. Push-pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa UK government's Foresight Food and Farming Futures project. Int J Agric Sustain 9: 162170.[Crossref]
  15. Menger DJ, Otieno B, de Rijk M, Mukabana WR, van Loon JJ, Takken W, , 2014. A push-pull system to reduce house entry of malaria mosquitoes. Malar J 13: 119.[Crossref]
  16. Menger DJ, Omusula P, Holdinga M, Homan T, Carreira AS, Vandendaele P, Derycke JL, Mweresa CK, Mukabana WR, van Loon JJ, Takken W, , 2015. Field evaluation of a push-pull system to reduce malaria transmission. PLoS One 10: e0123415.[Crossref]
  17. Snow WF, , 1987. Studies of house-entering habits of mosquitoes in The Gambia, West Africa: experiments with prefabricated huts with varied wall apertures. Med Vet Entomol 1: 921.[Crossref]
  18. Lindsay SW, Snow RW, , 1988. The trouble with eaves; house entry by vectors of malaria. Trans R Soc Trop Med Hyg 82: 645646.[Crossref]
  19. Njie M, Dilger E, Lindsay SW, Kirby MJ, , 2009. Importance of eaves to house entry by anopheline, but not culicine, mosquitoes. J Med Entomol 46: 505510.[Crossref]
  20. Lindsay SW, Emerson PM, Charlwood JD, , 2002. Reducing malaria by mosquito-proofing houses. Trends Parasitol 18: 510514.[Crossref]
  21. Kampango A, Braganca M, Sousa B, Charlwood JD, , 2013. Netting barriers to prevent mosquito entry into houses in southern Mozambique: a pilot study. Malar J 12: 99.[Crossref]
  22. Kirby MJ, Ameh D, Bottomley C, Green C, Jawara M, Milligan PJ, Snell PC, Conway DJ, Lindsay SW, , 2009. Effect of two different house screening interventions on exposure to malaria vectors and on anaemia in children in The Gambia: a randomised controlled trial. Lancet 374: 9981009.[Crossref]
  23. Lindsay SW, Jawara M, Paine K, Pinder M, Walraven GEL, Emerson PM, , 2003. Changes in house design reduce exposure to malaria mosquitoes. Trop Med Int Health 8: 512517.[Crossref]
  24. Tusting LS, Ippolito MM, Willey BA, Kleinschmidt I, Dorsey G, Gosling RD, Lindsay SW, , 2015. The evidence for improving housing to reduce malaria: a systematic review and meta-analysis. Malar J 14: 209.[Crossref]
  25. Campos E, Branquinho J, Carreira AS, Carvalho A, Coimbra P, Ferreira P, Gil MH, , 2013. Designing polymeric microparticles for biomedical and industrial applications. Eur Polym J 49: 20052021.[Crossref]
  26. Miró Specos MM, Garcia JJ, Tornesello J, Marino P, Della Vecchia M, Tesoriero MVD, Hermida LG, , 2010. Microencapsulated citronella oil for mosquito repellent finishing of cotton textiles. Trans R Soc Trop Med Hyg 104: 653658.[Crossref]
  27. N'Guessan R, Knols BGJ, Pennetier C, Rowland M, , 2008. DEET microencapsulation: a slow-release formulation enhancing the residual efficacy of bed nets against malaria vectors. Trans R Soc Trop Med Hyg 102: 259262.[Crossref]
  28. Menger DJ, van Loon JJA, Takken W, , 2014. Assessing the efficacy of candidate mosquito repellents against the background of an attractive source that mimics a human host. Med Vet Entomol 28: 407413.[Crossref]
  29. Okumu FO, Killeen GF, Ogoma S, Biswaro L, Smallegange RC, Mbeyela E, Titus E, Munk C, Ngonyani H, Takken W, Mshinda H, Mukabana WR, Moore SJ, , 2010. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PLoS One 5: e8951.[Crossref]
  30. van Loon JJA, Smallegange RC, Bukovinszkine-Kiss G, Jacobs F, De Rijk M, Mukabana WR, Verhulst NO, Menger DJ, Takken W, , 2015. Mosquito attraction: crucial role of carbon dioxide in formulation of a five-component blend of human-derived volatiles. J Chem Ecol 41: 567573.[Crossref]
  31. Mukabana WR, Mweresa CK, Otieno B, Omusula P, Smallegange RC, van Loon JJA, Takken W, , 2012. A novel synthetic odorant blend for trapping of malaria and other African mosquito species. J Chem Ecol 38: 235244.[Crossref]
  32. Hiscox A, Maire N, Kiche I, Silkey M, Homan T, Oria P, Mweresa CK, Otieno B, Ayugi M, Bousema T, Sawa P, Alaii J, Smith T, Leeuwis C, Mukabana WR, Takken W, , 2012. The SolarMal Project: innovative mosquito trapping technology for malaria control. Malar J 11 (Suppl 1): O45.[Crossref]
  33. Hiscox A, Otieno B, Kibet A, Mweresa CK, Omusula P, Geier M, Rose A, Mukabana WR, Takken W, , 2014. Development and optimization of the Suna trap as a tool for mosquito monitoring and control. Malar J 13: 257.[Crossref]
  34. Kline DL, , 2006. Traps and trapping techniques for adult mosquito control. J Am Mosq Control Assoc 22: 490496.[Crossref]
  35. Okumu FO, Govella NJ, Moore SJ, Chitnis N, Killeen GF, , 2010. Potential benefits, limitations and target product-profiles of odor-baited mosquito traps for malaria control in Africa. PLoS One 5: e11573.[Crossref]
  36. Costantini C, Sagnon NF, Sanogo E, Merzagora L, Coluzzi M, , 1998. Relationship to human biting collections and influence of light and bednet in CDC light-trap catches of West African malaria vectors. Bull Entomol Res 88: 503511.[Crossref]
  37. Lines JD, Curtis CF, Wilkes TJ, Njunwa KJ, , 1991. Monitoring human-biting mosquitoes (Diptera: Culicidae) in Tanzania with light-traps hung beside mosquito nets. Bull Entomol Res 81: 7784.[Crossref]
  38. Mweresa CK, Omusula P, Otieno B, van Loon JJ, Takken W, Mukabana WR, , 2014. Molasses as a source of carbon dioxide for attracting the malaria mosquitoes Anopheles gambiae and Anopheles funestus . Malar J 13: 160.[Crossref]
  39. Mweresa CK, Otieno B, Omusula P, Weldegergis BT, Verhulst NO, Dicke M, van Loon JJA, Takken W, Mukabana WR, , 2015. Understanding the long-lasting attraction of malaria mosquitoes to odor baits. PLoS One 10: e0121533.[Crossref]
  40. Mukabana WR, Mweresa CK, Omusula P, Orindi BO, Smallegange RC, van Loon JJA, Takken W, , 2012. Evaluation of low density polyethylene and nylon for delivery of synthetic mosquito attractants. Parasit Vectors 5: 202.[Crossref]
  41. Njiru BN, Mukabana WR, Takken W, Knols BGJ, , 2006. Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya. Malar J 5: 39.[Crossref]
  42. Qiu YT, Smallegange RC, Ter BC, Spitzen J, Van Loon JJ, Jawara M, Milligan P, Galimard AM, Van Beek TA, Knols BG, Takken W, , 2007. Attractiveness of MM-X traps baited with human or synthetic odor to mosquitoes (Diptera: Culicidae) in The Gambia. J Med Entomol 44: 970983.[Crossref]
  43. Jawara M, Smallegange RC, Jeffries D, Nwakanma DC, Awolola TS, Knols BGJ, Takken W, Conway DJ, , 2009. Optimizing odor-baited trap methods for collecting mosquitoes during the malaria season in The Gambia. PLoS One 4: e8167.[Crossref]
  44. Gillies MT, Coetzee M, , 1987. A supplement to the Anophelinae of Africa south of the Sahara (Afrotropical region). Publications of the South African Institute for Medical Research 55: 1143.
  45. Koekemoer LL, Kamau L, Hunt RH, Coetzee M, , 2002. A cocktail polymerase chain reaction assay to identify members of the Anopheles funestus (Diptera: Culicidae) group. Am J Trop Med Hyg 66: 804811.
  46. Scott JA, Brogdon WG, Collins FH, , 1993. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain-reaction. Am J Trop Med Hyg 49: 520529.
  47. Baker JL, , 2000. Evaluating the Impact of Development Projects on Poverty. Washington, DC: World Bank.[Crossref]
  48. Day JF, Curtis GA, , 1994. When it rains, they soar—and that makes Culex nigripalpus a dangerous mosquito. Am Entomol 40: 162167.[Crossref]
  49. Koenraadt CJM, Harrington LC, , 2008. Flushing effect of rain on container-inhabiting mosquitoes Aedes aegypti and Culex pipiens (Diptera: Culicidae). J Med Entomol 45: 2835.[Crossref]
  50. World Health Organization, 2014. World Health Organization Fact Sheet No. 102—Lymphatic Filariasis. Available at: http://www.who.int/mediacentre/factsheets/fs102/en/. Accessed January 15, 2015.
  51. Ogoma SB, Lweitoijera DW, Ngonyani H, Furer B, Russell TL, Mukabana WR, Killeen GF, Moore SJ, , 2010. Screening mosquito house entry points as a potential method for integrated control of endophagic filariasis, arbovirus and malaria vectors. PLoS Negl Trop Dis 4: e773.[Crossref]
  52. Kulkarni MA, Malima R, Mosha FW, Msangi S, Mrema E, Kabula B, Lawrence B, Kinung'hi S, Swilla J, Kisinza W, Rau ME, Miller JE, Schellenberg JA, Maxwell C, Rowland M, Magesa S, Drakeley C, , 2007. Efficacy of pyrethroid-treated nets against malaria vectors and nuisance-biting mosquitoes in Tanzania in areas with long-term insecticide-treated net use. Trop Med Int Health 12: 10611073.[Crossref]
  53. Kirby MJ, Bah P, Jones COH, Kelly AH, Jasseh M, Lindsay SW, , 2010. Social acceptability and durability of two different house screening interventions against exposure to malaria vectors, Plasmodium falciparum infection, and anemia in children in The Gambia, west Africa. Am J Trop Med Hyg 83: 965972.[Crossref]
  54. Killeen GF, Smith TA, , 2007. Exploring the contributions of bed nets, cattle, insecticides, and excitorepellency to malaria control: a deterministic model of mosquito host-seeking behaviour and mortality. Trans R Soc Trop Med Hyg 101: 867880.[Crossref]
  55. Hao HL, Wei JR, Dai JQ, Du JW, , 2008. Host-seeking and blood-feeding behavior of Aedes albopictus (Diptera: Culicidae) exposed to vapors of geraniol, citral, citronellal, eugenol, or anisaldehyde. J Med Entomol 45: 533539.[Crossref]
  56. Day JF, Sjogren RD, , 1994. Vector control by removal trapping. Am J Trop Med Hyg 50: 126133.
  57. Wagman JM, Grieco JP, Bautista K, Polanco J, Briceno I, King R, Achee NL, , 2015. The field evaluation of a push-pull system to control malaria vectors in northern Belize, Central America. Malar J 14: 184.[Crossref]
  58. Fillinger U, Sonye G, Killeen GF, Knols BGJ, Becker N, , 2004. The practical importance of permanent and semipermanent habitats for controlling aquatic stages of Anopheles gambiae sensu lato mosquitoes: operational observations from a rural town in western Kenya. Trop Med Int Health 9: 12741289.[Crossref]
  59. Maia MF, Onyango SP, Thele M, Simfukwe ET, Turner EL, Moore SJ, , 2013. Do topical repellents divert mosquitoes within a community? Health equity implications of topical repellents as a mosquito bite prevention tool. PLoS One 8: e84875.[Crossref]
  60. Carroll SP, Loye J, , 2006. PMD, a registered botanical mosquito repellent with deet-like efficacy. J Am Mosq Control Assoc 22: 507514.[Crossref]
  61. Pask GM, Romaine IM, Zwiebel LJ, , 2013. The molecular receptive range of a lactone receptor in Anopheles gambiae . Chem Senses 38: 1925.[Crossref]
  62. Lin FM, Wilkens WF, , 1970. Volatile flavour components of coconut meat. J Food Sci 35: 538539.[Crossref]
  63. Mahajan SS, Goddik L, Qian MC, , 2004. Aroma compounds in sweet whey powder. J Dairy Sci 87: 40574063.[Crossref]
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0632
Loading
/content/journals/10.4269/ajtmh.15-0632
Loading

Data & Media loading...

Supplementary Data

Supplementary PDF

  • Received : 28 Aug 2015
  • Accepted : 31 Oct 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error