1921
Volume 94, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

endosymbionts are potentially useful tools for suppressing disease transmission by mosquitoes because can interfere with the transmission of dengue and other viruses as well as causing deleterious effects on their mosquito hosts. Most recent research has focused on the Mel infection, but other infections also influence viral transmission and may spread in natural populations. Here, we focus on the AlbB infection in an Australian outbred background and show that this infection has many features that facilitate its invasion into natural populations including strong cytoplasmic incompatibility, a lack of effect on larval development, an equivalent mating success to uninfected males and perfect maternal transmission fidelity. On the other hand, the infection has deleterious effects when eggs are held in a dried state, falling between Mel and the more virulent MelPop strains. The impact of this infection on lifespan also appears to be intermediate, consistent with the observation that this infection has a titer in adults between Mel and MelPop. Population cage experiments indicate that the AlbB infection establishes in cages when introduced at a frequency of 22%, suggesting that this strain could be successfully introduced into populations and subsequently persist and spread.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.15-0608
2016-03-02
2017-09-23
Loading full text...

Full text loading...

/deliver/fulltext/14761645/94/3/507.html?itemId=/content/journals/10.4269/ajtmh.15-0608&mimeType=html&fmt=ahah

References

  1. Hoffmann AA, Montgomery BL, Popovici J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, Greenfield M, Durkan M, Leong YS, Dong Y, Cook H, Axford J, Callahan AG, Kenny N, Omodei C, McGraw EA, Ryan PA, Ritchie SA, Turelli M, O'Neill SL, , 2011. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature 476: 454457.[Crossref]
  2. McGraw EA, O'Neill SL, , 2013. Beyond insecticides: new thinking on an ancient problem. Nat Rev Microbiol 11: 181193.[Crossref]
  3. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu GJ, Pyke AT, Hedges LM, Rocha BC, Hall-Mendelin S, Day A, Riegler M, Hugo LE, Johnson KN, Kay BH, McGraw EA, van den Hurk AF, Ryan PA, O'Neill SL, , 2009. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, chikungunya, and Plasmodium . Cell 139: 12681278.[Crossref]
  4. Ferguson NM, Hue Kien DT, Clapham H, Aguas R, Trung VT, Bich Chau TN, Popovici J, Ryan PA, O'Neill SL, McGraw EA, Long VT, Dui LT, Nguyen HL, Vinh Chau NV, Wills B, Simmons CP, , 2015. Modeling the impact on virus transmission of Wolbachia-mediated blocking of dengue virus infection of Aedes aegypti . Sci Transl Med 7: 279ra37.[Crossref]
  5. Mains JW, Brelsfoard CL, Crain PR, Huang YX, Dobson SL, , 2013. Population impacts of Wolbachia on Aedes albopictus . Ecol Appl 23: 493501.[Crossref]
  6. Rašić G, Endersby EM, Williams C, Hoffmann AA, , 2014. Using Wolbachia-based releases for suppression of Aedes mosquitoes: insights from genetic data and population simulations. Ecol Appl 24: 12261234.[Crossref]
  7. Hoffmann AA, Iturbe-Ormaetxe I, Callahan A, Phillips BL, Billington K, Axford JK, Montgomery B, Turley AP, O'Neill SL, , 2014. Stability of the wMel Wolbachia infection following invasion into Aedes aegypti populations. PLoS Negl Trop Dis 8: e3115.[Crossref]
  8. Hoffmann AA, Ross PA, Rašić G, , 2015. Wolbachia strains for disease control: ecological and evolutionary considerations. Evol Appl 8: 751768.[Crossref]
  9. Dean MD, , 2006. A Wolbachia-associated fitness benefit depends on genetic background in Drosophila simulans . Proc R Soc Lond B Biol Sci 273: 14151420.[Crossref]
  10. Chrostek E, Marialva MSP, Esteves SS, Weinert LA, Martinez J, Jiggins FM, Teixeira L, , 2013. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet 9: e1003896.[Crossref]
  11. Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, Bourtzis K, Teixeira L, Jiggins FM, , 2014. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog 10: e1004369.[Crossref]
  12. McMeniman CJ, Lane RV, Cass BN, Fong AWC, Sidhu M, Wang YF, O'Neill SL, , 2009. Stable introduction of a life-shortening Wolbachia infection into the mosquito Aedes aegypti . Science 323: 141144.[Crossref]
  13. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, Leong YS, Dong Y, Axford J, Kriesner P, Lloyd AL, Ritchie SA, O'Neill SL, Hoffmann AA, , 2011. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 476: 450453.[Crossref]
  14. Xi ZY, Khoo CCH, Dobson SL, , 2005. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310: 326328.[Crossref]
  15. Bian GW, Xu Y, Lu P, Xie Y, Xi ZY, , 2010. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti . PLoS Pathog 6: e1000833.[Crossref]
  16. Yeap HL, Mee P, Walker T, Weeks AR, O'Neill SL, Johnson P, Ritchie SA, Richardson KM, Doig C, Endersby NM, Hoffmann AA, , 2011. Dynamics of the “Popcorn” Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187: 583595.[Crossref]
  17. Ross PA, Endersby NM, Yeap HL, Hoffmann AA, , 2014. Larval competition extends developmental time and decreases adult size of wMelPop Wolbachia-infected Aedes aegypti . Am J Trop Med Hyg 91: 198205.[Crossref]
  18. Barton NH, Turelli M, , 2011. Spatial waves of advance with bistable dynamics: cytoplasmic and genetic analogues of allee effects. Am Nat 178: E48E75.[Crossref]
  19. Ritchie SA, Townsend M, Paton CJ, Callahan AG, Hoffmann AA, , 2015. Application of wMelPop Wolbachia strain to crash local populations of Aedes aegypti . PLoS Negl Trop Dis 9: e0003930.[Crossref]
  20. Yeap HL, Axford JK, Popovici J, Endersby NM, Iturbe-Ormaetxe I, Ritchie SA, Hoffmann AA, , 2014. Assessing quality of life-shortening Wolbachia-infected Aedes aegypti mosquitoes in the field based on capture rates and morphometric assessments. Parasit Vectors 7: 58.[Crossref]
  21. De Vos K, , 2005. Cell Counter v2.0. Available at: http://rsb.info.nih.gov/ij/plugins/cell-counter.html. Accessed June 10, 2013.
  22. Schneider CA, Rasband WS, Eliceiri KW, , 2012. NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671675.[Crossref]
  23. Briegel H, , 1990. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti . J Insect Physiol 36: 165172.[Crossref]
  24. Nasci RS, , 1990. Relationship of wing length to adult dry-weight in several mosquito species (Diptera, Culicidae). J Med Entomol 27: 716719.[Crossref]
  25. Anderson LE, , 1954. Hoyer's solution as a rapid permanent mounting medium for bryophytes. Bryologist 57: 242244.[Crossref]
  26. Colton YM, Chadee DD, Severson DW, , 2003. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med Vet Entomol 17: 195204.[Crossref]
  27. Oliva LO, Correia JC, Albuquerque CMR, , 2014. How mosquito age and the type and color of oviposition sites modify skip-oviposition behavior in Aedes aegypti (Diptera: Culicidae)? J Insect Behav 27: 8191.[Crossref]
  28. Hoffmann AA, Turelli M, O'Neill S, Hoffmann AA, Werren J, , 1997. Cytoplasmic incompatibility in insects. , eds. Influential Passengers: Microorganisms and Invertebrate Reproduction. Oxford, UK: Oxford University Press, 4280.
  29. R Core Team, 2015. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: http://www.R-project.org/.
  30. Hoffmann AA, Turelli M, Harshman LG, , 1990. Factors affecting the distribution of cytoplasmic incompatibility in Drosophila simulans . Genetics 126: 933948.
  31. Segoli M, Hoffmann AA, Lloyd J, Omodei GJ, Ritchie SA, , 2014. The effect of virus-blocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti . PLoS Negl Trop Dis 8: 10.[Crossref]
  32. Lee SF, White VL, Weeks AR, Hoffmann AA, Endersby NM, , 2012. High-throughput PCR assays to monitor Wolbachia infection in the dengue mosquito (Aedes aegypti) and Drosophila simulans . Appl Environ Microbiol 78: 47404743.[Crossref]
  33. Duhrkopf RE, Benny H, , 1990. Differences in the larval alarm reaction in populations of Aedes aegypti and Aedes albopictus . J Am Mosq Control Assoc 6: 411414.
  34. McMeniman CJ, O'Neill SL, , 2010. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence. PLoS Negl Trop Dis 4: e748.[Crossref]
  35. Tortosa P, Charlat S, Labbé P, Dehecq J-S, Barré H, Weill M, , 2010. Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility. PLoS One 5: e9700.[Crossref]
  36. Murdock CC, Blanford S, Hughes GL, Rasgon JL, Thomas MB, , 2014. Temperature alters Plasmodium blocking by Wolbachia . Sci Rep 4: 3932.[Crossref]
  37. Min KT, Benzer S, , 1997. Wolbachia, normally a symbiont of Drosophila, can be virulent, causing degeneration and early death. Proc Natl Acad Sci USA 94: 1079210796.[Crossref]
  38. Kriesner P, Hoffmann AA, Lee SF, Turelli M, Weeks AR, , 2013. Rapid sequential spread of two Wolbachia variants in Drosophila simulans . PLoS Pathog 9: e1003607.[Crossref]
  39. Dobson SL, Marsland EJ, Rattanadechakul W, , 2002. Mutualistic Wolbachia infection in Aedes albopictus: accelerating cytoplasmic drive. Genetics 160: 10871094.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0608
Loading
/content/journals/10.4269/ajtmh.15-0608
Loading

Data & Media loading...

Supplementary Data

Supplementary PDF

  • Received : 19 Aug 2015
  • Accepted : 03 Nov 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error