Volume 94, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Polymorphisms within vaccine candidate antigens have the potential to compromise vaccine efficacy. Understanding the allele frequencies of polymorphisms in critical binding regions of antigens can help in the designing of strain-transcendent vaccines. Here, we adopt a pooled deep-sequencing approach, originally designed to study drug resistance mutations, to study the diversity of two leading transmission-blocking vaccine candidates, Pfs25 and Pfs48/45. We sequenced 329 field isolates from six different geographic regions. Pfs25 showed little diversity, with only one known polymorphism identified in the region associated with binding of transmission-blocking antibodies among our isolates. However, we identified four new mutations among eight non-synonymous mutations within the presumed antibody-binding region of Pfs48/45. Pooled deep sequencing provides a scalable and cost-effective approach for the targeted study of allele frequencies of candidate vaccine antigens.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. WHO, 2014. World Malaria Report 2014. Geneva, Switzerland: World Health Organization. [Google Scholar]
  2. RTS,S Clinical Trials Partnership, 2015. Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet 386: 3145.[Crossref] [Google Scholar]
  3. Thera MA, Doumbo OK, Coulibaly D, Diallo DA, Kone AK, Guindo AB, Traore K, Dicko A, Sagara I, Sissoko MS, Baby M, Sissoko M, Diarra I, Niangaly A, Dolo A, Daou M, Diawara SI, Heppner DG, Stewart VA, Angov E, Bergmann-Leitner ES, Lanar DE, Dutta S, Soisson L, Diggs CL, Leach A, Owusu A, Dubois MC, Cohen J, Nixon JN, Gregson A, Takala SL, Lyke KE, Plowe CV, , 2008. Safety and immunogenicity of an AMA-1 malaria vaccine in Malian adults: results of a phase 1 randomized controlled trial. PLoS One 3: e1465.[Crossref] [Google Scholar]
  4. Carter R, , 2001. Transmission blocking malaria vaccines. Vaccine 19: 23092314.[Crossref] [Google Scholar]
  5. Carter R, Mendis KN, Miller LH, Molineaux L, Saul A, , 2000. Malaria transmission-blocking vaccines—how can their development be supported? Nat Med 6: 241244.[Crossref] [Google Scholar]
  6. Takala SL, Coulibaly D, Thera MA, Batchelor AH, Cummings MP, Escalante AA, Ouattara A, Traore K, Niangaly A, Djimde AA, Doumbo OK, Plowe CV, , 2009. Extreme polymorphism in a vaccine antigen and risk of clinical malaria: implications for vaccine development. Sci Transl Med 1: 2ra5.[Crossref] [Google Scholar]
  7. Bousema JT, Drakeley CJ, Kihonda J, Hendriks JC, Akim NI, Roeffen W, Sauerwein RW, , 2007. A longitudinal study of immune responses to Plasmodium falciparum sexual stage antigens in Tanzanian adults. Parasite Immunol 29: 309317.[Crossref] [Google Scholar]
  8. Bousema T, Roeffen W, Meijerink H, Mwerinde H, Mwakalinga S, van Gemert GJ, van de Vegte-Bolmer M, Mosha F, Targett G, Riley EM, Sauerwein R, Drakeley C, , 2010. The dynamics of naturally acquired immune responses to Plasmodium falciparum sexual stage antigens Pfs230 and Pfs48/45 in a low endemic area in Tanzania. PLoS One 5: e14114.[Crossref] [Google Scholar]
  9. Barry AE, Arnott A, , 2014. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 5: 359.[Crossref] [Google Scholar]
  10. Taylor SM, Parobek CM, Aragam N, Ngasala BE, Martensson A, Meshnick SR, Juliano JJ, , 2013. Pooled deep sequencing of Plasmodium falciparum isolates: an efficient and scalable tool to quantify prevailing malaria drug-resistance genotypes. J Infect Dis 208: 19982006.[Crossref] [Google Scholar]
  11. Taylor SM, Parobek CM, DeConti DK, Kayentao K, Coulibaly SO, Greenwood BM, Tagbor H, Williams J, Bojang K, Njie F, Desai M, Kariuki S, Gutman J, Mathanga DP, Martensson A, Ngasala B, Conrad MD, Rosenthal PJ, Tshefu AK, Moormann AM, Vulule JM, Doumbo OK, Ter Kuile FO, Meshnick SR, Bailey JA, Juliano JJ, , 2015. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J Infect Dis 211: 680688.[Crossref] [Google Scholar]
  12. Bordbar B, Tuikue Ndam N, Renard E, Jafari-Guemouri S, Tavul L, Jennison C, Gnidehou S, Tahar R, Gamboa D, Bendezu J, Menard D, Barry AE, Deloron P, Sabbagh A, , 2014. Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria. Infect Genet Evol 25: 8192.[Crossref] [Google Scholar]
  13. Outchkourov N, Vermunt A, Jansen J, Kaan A, Roeffen W, Teelen K, Lasonder E, Braks A, van de Vegte-Bolmer M, Qiu LY, Sauerwein R, Stunnenberg HG, , 2007. Epitope analysis of the malaria surface antigen pfs48/45 identifies a subdomain that elicits transmission blocking antibodies. J Biol Chem 282: 1714817156.[Crossref] [Google Scholar]
  14. Sharma B, , 2008. Structure and mechanism of a transmission blocking vaccine candidate protein Pfs25 from P. falciparum: a molecular modeling and docking study. In Silico Biol 8: 193206. [Google Scholar]
  15. Venkatesan M, Gadalla NB, Stepniewska K, Dahal P, Nsanzabana C, Moriera C, Price RN, Martensson A, Rosenthal PJ, Dorsey G, Sutherland CJ, Guerin P, Davis TM, Menard D, Adam I, Ademowo G, Arze C, Baliraine FN, Berens-Riha N, Bjorkman A, Borrmann S, Checchi F, Desai M, Dhorda M, Djimde AA, El-Sayed BB, Eshetu T, Eyase F, Falade C, Faucher JF, Froberg G, Grivoyannis A, Hamour S, Houze S, Johnson J, Kamugisha E, Kariuki S, Kiechel JR, Kironde F, Kofoed PE, LeBras J, Malmberg M, Mwai L, Ngasala B, Nosten F, Nsobya SL, Nzila A, Oguike M, Otienoburu SD, Ogutu B, Ouedraogo JB, Piola P, Rombo L, Schramm B, Some AF, Thwing J, Ursing J, Wong RP, Zeynudin A, Zongo I, Plowe CV, Sibley CH, WWARN AL and ASAQ Molecular Marker Study Group; , 2014. Polymorphisms in Plasmodium falciparum chloroquine resistance transporter and multidrug resistance 1 genes: parasite risk factors that affect treatment outcomes for P. falciparum malaria after artemether-lumefantrine and artesunate-amodiaquine. Am J Trop Med Hyg 91: 833843.[Crossref] [Google Scholar]
  16. Lin JT, Hathaway NJ, Saunders DL, Lon C, Balasubramanian S, Kharabora O, Gosi P, Sriwichai S, Kartchner L, Chuor CM, Satharath P, Lanteri C, Bailey JA, Juliano JJ, , 2015. Using amplicon deep sequencing to detect genetic signatures of Plasmodium vivax relapse. J Infect Dis 212: 9991008.[Crossref] [Google Scholar]

Data & Media loading...

Supplementary PDF

  • Received : 07 Aug 2015
  • Accepted : 01 Sep 2015
  • Published online : 06 Jan 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error