1921
Volume 95, Issue 1
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645

Abstract

Abstract

Dengue is responsible for a wide range of clinical manifestations, ranging from asymptomatic infections to severe cases. The alteration of cytokine levels correlated with clinical characteristics can help determine prognostic markers of the disease and the identification of targets for immunotherapy. We measured the viral load, serotype, and cytokine levels of 212 serum samples from patients with acute dengue infection during days 1–4 after the onset of symptoms. The patients were classified as either with hemorrhagic manifestations (HM) or with no hemorrhagic manifestations (NHM). The cytokines interleukin-6 (IL-6), IL-8, and IL-10 were increased ( < 0.05) in the dengue virus+ group, compared with the control group. A higher viral load ( < 0.05) and IL-6 was detected in the HM group compared with the NHM group. Interestingly, the NHM group demonstrated a significant positive correlation between inflammatory (IL-6 and 8) and anti-inflammatory (IL-10) cytokines, whereas the HM group did not. These findings suggest that a disturbance in the balance of inflammatory cytokines IL-6 and IL-8 with the anti-inflammatory cytokine, IL-10, combined with the high levels of IL-6 and viral load, characterize possible mechanisms related to the formation of HM.

Loading

Article metrics loading...

/content/journals/10.4269/ajtmh.15-0537
2016-07-06
2017-11-17
Loading full text...

Full text loading...

/deliver/fulltext/14761645/95/1/193.html?itemId=/content/journals/10.4269/ajtmh.15-0537&mimeType=html&fmt=ahah

References

  1. World Health Organization and Special Programme for Research and Training in Tropical Diseases, 2009. Dengue: Guidelines for Diagnosis, Treatment, Prevention and Control–New edition. Geneva, Switzerland: PREFACE. Available at: http://www.ncbi.nlm.nih.gov/books/NBK143154/.
  2. Chen R, Vasilakis N, , 2011. Dengue: Quo tu et quo vadis? Viruses 3: 15621608.[Crossref]
  3. Clyde K, Kyle JL, Harris E, , 2006. Recent advances in deciphering viral and host determinants of dengue virus replication and pathogenesis. J Virol 80: 1141811431.[Crossref]
  4. Vaughn DW, Green S, Kalayanarooj S, Innis BL, Nimmannitya S, Suntayakorn S, Endy TP, Raengsakulrach B, Rothman AL, Ennis FA, Nisalak A, , 2000. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis 181: 29.[Crossref]
  5. OhAinle M, Balmaseda A, Macalalad AR, Tellez Y, Zody MC, Saborío S, Nuñes A, Lennon NJ, Birren BW, Gordon A, Henn MR, Harris E, , 2011. Dynamics of dengue disease severity determined by the interplay between viral genetics and serotype-specific immunity. Sci Transl Med 3: 114ra128.[Crossref]
  6. Guabiraba R, Ryffel B, , 2014. Dengue virus infection: current concepts in immune mechanisms and lessons from murine models. Immunology 141: 143156.[Crossref]
  7. Deen JL, Harris E, Wills B, Balmaseda A, Hammond SN, Rocha C, Dung NM, Hung NT, Hien TT, Farrar JJ, , 2006. The WHO dengue classification and case definitions: time for a reassessment. Lancet 368: 170173.[Crossref]
  8. Phuong CX, Nhan NT, Kneen R, Thuy PT, Van Thien C, Nga NT, Thuy TT, Solomon T, Stepniewska K, Wills B, , 2004. Clinical diagnosis and assessment of severity of confirmed dengue infections in Vietnamese children: is the World Health Organization classification system helpful? Am J Trop Med Hyg 70: 172179.
  9. Balmaseda A, Hammond SN, Perez L, Tellez Y, Saborio SI, Mercado C, Cuadra R, Rocha J, Pérez MA, Silva S, Rocha C, Harris E, , 2006. Serotype-specific differences in clinical manifestations of dengue. Am J Trop Med Hyg 74: 449456.
  10. Bandyopadhyay S, Lum LC, Kroeguer A, , 2006. Classifying dengue: a review of the difficulties in using the WHO case classification for dengue haemorrhagic fever. Trop Med Int Health 11: 12381255.[Crossref]
  11. Rigau-Pérez JG, , 2006. Severe dengue: the need for new case definitions. Lancet Infect Dis 6: 297302.[Crossref]
  12. Narvaez F, Gutierrez G, Perez MA, Elizondo D, Nuñez A, Balmaseda A, Harris E, , 2011. Evaluation of the traditional and revised WHO classifications of dengue disease severity. PLoS Negl Trop Dis 5: e1397.[Crossref]
  13. Raghupathy R, Chaturvedi UC, Al-Sayer H, Elbishbishi EA, Agarwal R, Nagar R, Kapoor S, Misra A, Mathur A, Nusrat H, Azizieh F, Khan MA, Mustafa AS, , 1998. Elevated levels of IL-8 in dengue hemorrhagic fever. J Med Virol 56: 280285.[Crossref]
  14. Green S, Vaughn DW, Kalayanarooj S, Nimmannitya S, Suntayakorn S, Nisalak A, Lew R, Innis BL, Kurane I, Rothman AL, Ennis FA, , 1999. Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J Infect Dis 179: 755762.[Crossref]
  15. Kittigul L, Temprom W, Sujirarat D, Kittigul C, , 2000. Determination of tumor necrosis factor-alpha levels in dengue virus infected patients by sensitive biotin-streptavidin enzyme-linked immunosorbent assay. J Virol Methods 90: 5157.[Crossref]
  16. Fink JG, Vasudevan SG, , 2006. Role of T cells, cytokines and antibody in dengue fever and dengue hemorrhagic fever. Rev Med Virol 16: 263275.[Crossref]
  17. Bozza FA, Cruz OG, Zagne SM, Azeredo EL, Nogueira RM, Assis EF, Bozza PT, Kubelka CF, , 2008. Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity. BMC Infect Dis 8: 86.[Crossref]
  18. Rachman A, Rinaldi I, , 2006. Coagulopathy in dengue infection and the role of interleukin-6. Acta Med Indones 38: 105108.
  19. Lee YR, Liu MT, Lei HY, Liu CC, Wu JM, Tung YC, Lin YS, Yeh TM, Chen SH, Liu HS, , 2006. MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells. J Gen Virol 87: 36233630.[Crossref]
  20. Talavera D, Castillo AM, Dominguez MC, Gutierrez AE, Meza I, , 2004. IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers. J Gen Virol 85: 18011813.[Crossref]
  21. Priyadarshini D, Gadia RR, Tripathy A, Gurukumar KR, Bhagat A, Patwardhan S, Mokashi N, Vaidya D, Shah PS, Cecilia D, , 2010. Clinical findings and pro-inflammatory cytokines in dengue patients in western India: a facility-based study. PLoS One 5: e8709.[Crossref]
  22. Tsai T, Chuang Y, Lin Y, Wan S, Chen C, Lin C, , 2013. An emerging role for the anti-inflammatory cytokine interleukin-10 in dengue virus infection. J Biomed Sci 20: 40.[Crossref]
  23. Ubol S, Halstead SB, , 2010. How innate immune mechanisms contribute to antibody-enhanced viral infections. Clin Vaccine Immunol 17: 18291835.[Crossref]
  24. Srikiatkhachorn A, Green S, , 2010. Markers of dengue disease severity. Curr Top Microbiol Immunol 338: 6782.
  25. Kumar Y, Liang C, Bo Z, Rajapakse JC, Ooi EE, Tannenbaum SR, , 2012. Serum proteome and cytokine analysis in a longitudinal cohort of adults with primary dengue infection reveals predictive markers of DHF. PLoS Negl Trop Dis 6: e1887.[Crossref]
  26. Jarman RG, Nisalak A, Anderson KB, Klungthong C, Thaisomboonsuk B, Kaneechit W, Kalayanarooj S, Gibbons RV, , 2011. Factors influencing dengue virus isolation by C6/36 cell culture and mosquito inoculation of nested PCR-positive clinical samples. Am J Trop Med Hyg 84: 218223.[Crossref]
  27. Gurukumar KR, Priyadarshini D, Patil JA, Bhagat A, Singh A, Shah PS, Cecilia D, , 2009. Development of real time PCR for detection and quantitation of dengue viruses. Virol J 6: 10.[Crossref]
  28. World Health Organization (WHO), 2009. CDC protocol of realtime RTPCR for Swine Influenza A(H1N1). Version 2009. World Health Organization, Atlanta, GA. Available at: http://www.who.int/csr/resources/publications/swineflu/CDCRealtimeRTPCR_SwineH1Assay-2009_20090430.pdf. Accessed April 15, 2016.
  29. Caldas S, Caldas IS, Diniz LF, Lima WG, Oliveira RP, Cecílio AB, Ribeiro I, Talvania A, Bahia MT, , 2012. Real-time PCR strategy for parasite quantification in blood and tissue samples of experimental Trypanosoma cruzi infection. Acta Trop 123: 170177.[Crossref]
  30. Cecílio AB, Caldas S, Oliveira RA, Santos ASB, Richardson M, Naumann GB, Schneider FS, Alvarenga VG, Estevão-Costa MI, Fuly AL, Eble JA, Sanchez EF, , 2013. Molecular characterization of Lys49 and Asp49 phospholipases A2 from snake venom and their antiviral activities against dengue virus. Toxins 5: 17801798.[Crossref]
  31. Endy TP, Nisalak A, Chunsuttitwat S, Vaughn DW, Green S, Ennis FA, Rothman AL, Libraty DH, , 2004. Relationship of preexisting dengue virus (DV) neutralizing antibody levels to viremia and severity of disease in a prospective cohort study of DV infection in Thailand. J Infect Dis 189: 9901000.[Crossref]
  32. Wang WK, Chen HL, Yang CF, Hsieh SC, Juan CC, Chang SM, Yu CC, Lin LH, Huang JH, King CC, , 2006. Slower rates of clearance of viral load and virus-containing immune complexes in patients with dengue hemorrhagic fever. Clin Infect Dis 43: 10231030.[Crossref]
  33. Libraty DH, Acosta LP, Tallo V, Segubre-Mercado E, Bautista A, Potts JA, Jarman RG, Yoon IK, Gibbons RV, Brion JD, Capeding RZ, , 2009. A prospective nested case-control study of dengue in infants: rethinking and refining the antibody-dependent enhancement dengue hemorrhagic fever model. PLoS Med 6: e1000171.[Crossref]
  34. Guilarde AO, Turchi MD, Siqueira JB, Feres VC, Rocha B, Levi JE, Souza VA, Boas LS, Pannuti CS, Martelli CM, , 2008. Dengue and dengue hemorrhagic fever among adults: clinical outcomes related to viremia, serotypes, and antibody response. J Infect Dis 197: 817824.[Crossref]
  35. Akdis CA, Akdis M, , 2009. Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. J Allergy Clin Immunol 123: 735746.[Crossref]
  36. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G, Schaper F, , 2003. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374: 120.[Crossref]
  37. Matsushima K, Morishita K, Yoshimura T, Lavu S, Kobayashi Y, Lew W, Appella E, Kung HF, Leonard EJ, Oppenheim JJ, , 1988. Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. J Exp Med 167: 18831893.[Crossref]
  38. Burke SM, Issekutz TB, Mohan K, Lee PW, Shmulevitz M, Marshall JS, , 2008. Human mast cell activation with virus-associated stimuli leads to the selective chemotaxis of natural killer cells by a CXCL8-dependent mechanism. Blood 111: 54675476.[Crossref]
  39. Levy A, Valero N, Espina LM, Añez G, Arias J, Mosquera J, , 2010. Increment of interleukin 6, tumour necrosis factor alpha, nitric oxide, C-reactive protein and apoptosis in dengue. Trans R Soc Trop Med Hyg 104: 1623.[Crossref]
  40. Lanciotti RS, Gubler DJ, Trent DW, , 1997. Molecular evolution and phylogeny of dengue-4 viruses. J Gen Virol 78: 22792284.[Crossref]
  41. Costa VV, Fagundes CT, Souza DG, Teixeira MM, , 2013. Inflammatory and innate immune responses in dengue infection: protection versus disease induction. Am J Pathol 182: 19501961.[Crossref]
  42. Chaturvedi UC, , 2006. The curse of dengue. Indian J Med Res 124: 467470.
http://instance.metastore.ingenta.com/content/journals/10.4269/ajtmh.15-0537
Loading
/content/journals/10.4269/ajtmh.15-0537
Loading

Data & Media loading...

  • Received : 22 Jul 2015
  • Accepted : 07 Feb 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error