Volume 95, Issue 3
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



Substantial investment has been made into the once “neglected” tropical disease, soil-transmitted helminthiasis, and into control programs that operate within a framework of mapping baseline disease distribution, measuring the effectiveness of applied interventions, establishing when to cease drug administration, and for posttreatment evaluations. However, critical to each of these stages is the determination of helminth infection. The limitations of traditional microscope-based fecal egg diagnostics have not provided quality assurance in the monitoring of parasite disease and suboptimal treatment regimes provide for the potential development of parasite resistance to anthelmintic drugs. Improved diagnostic and surveillance tools are required to protect therapeutic effectiveness and to maintain funder confidence. Such tools may be on the horizon with emergent technologies that offer potential for enhanced visualization and quality-assured quantitation of helminth eggs.

[open-access] This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Bethony J, Brooker S, Albonico M, Geiger SM, Loukas A, Diemert D, Hotez PJ, , 2006. Soil-transmitted helminth infections: ascariasis, trichuriasis, and hookworm. Lancet 367: 15211532.[Crossref] [Google Scholar]
  2. Ziegelbauer K, Speich B, Mausezahl D, Bos R, Keiser J, Utzinger J, , 2012. Effect of sanitation on soil-transmitted helminth infection: systematic review and meta-analysis. PLoS Med 9: e1001162.[Crossref] [Google Scholar]
  3. WHO, 2015. Investing to Overcome the Global Impact of Neglected Tropical Diseases: Third WHO Report on Neglected Diseases. Geneva, Switzerland: World Health Organization. [Google Scholar]
  4. Albonico M, Engels D, Savioli L, , 2004. Monitoring drug efficacy and early detection of drug resistance in human soil-transmitted nematodes: a pressing public health agenda for helminth control. Int J Parasitol 34: 12051210.[Crossref] [Google Scholar]
  5. Cringoli G, Rinaldi L, Albonico M, Bergquist R, Utzinger J, , 2013. Geospatial (s) tools: integration of advanced epidemiological sampling and novel diagnostics. Geospat Health 7: 399404.[Crossref] [Google Scholar]
  6. Bergquist R, Johansen MV, Utzinger J, , 2009. Diagnostic dilemmas in helminthology: what tools to use and when? Trends Parasitol 25: 151156.[Crossref] [Google Scholar]
  7. Barda B, Cajal P, Villagran E, Cimino R, Juarez M, Krolewiecki A, Rinaldi L, Cringoli G, Burioni R, Albonico M, , 2014. Mini-FLOTAC, Kato-Katz and McMaster: three methods, one goal; highlights from north Argentina. Parasit Vectors 7: 271.[Crossref] [Google Scholar]
  8. Knopp S, Rinaldi L, Khamis IS, Stothard JR, Rollinson D, Maurelli MP, Steinmann P, Marti H, Cringoli G, Utzinger J, , 2009. A single FLOTAC is more sensitive than triplicate Kato–Katz for the diagnosis of low-intensity soil-transmitted helminth infections. Trans R Soc Trop Med Hyg 103: 347354.[Crossref] [Google Scholar]
  9. Levecke B, Behnke JM, Ajjampur SS, Albonico M, Ame SM, Charlier J, Geiger SM, Hoa NT, Ngassam RI, Kotze AC, McCarthy JS, Montresor A, Periago MV, Roy S, Tchuente LA, Thach DT, Vercruysse J, , 2011. A comparison of the sensitivity and fecal egg counts of the McMaster egg counting and Kato-Katz thick smear methods for soil-transmitted helminths. PLoS Negl Trop Dis 5: e1201.[Crossref] [Google Scholar]
  10. Cooke IR, Laing CJ, White LV, Wakes SJ, Sowerby SJ, , 2015. Analysis of menisci formed on cones for single field of view parasite egg microscopy. J Microsc 257: 133141.[Crossref] [Google Scholar]
  11. Speich B, Ali SM, Ame SM, Albonico M, Utzinger J, Keiser J, , 2015. Quality control in the diagnosis of Trichuris trichiura and Ascaris lumbricoides using the Kato-Katz technique: experience from three randomised controlled trials. Parasit Vectors 8: 25652120.[Crossref] [Google Scholar]
  12. Barda B, Albonico M, Ianniello D, Ame SM, Keiser J, Speich B, Rinaldi L, Cringoli G, Burioni R, Montresor A, , 2015. How long can stool samples be fixed for an accurate diagnosis of soil-transmitted helminth infection using mini-FLOTAC? PLoS Negl Trop Dis 9: e0003698.[Crossref] [Google Scholar]
  13. Levecke B, Brooker SJ, Knopp S, Steinmann P, Sousa-Figueiredo JC, Stothard JR, Utzinger J, Vercruysse J, , 2014. Effect of sampling and diagnostic effort on the assessment of schistosomiasis and soil-transmitted helminthiasis and drug efficacy: a meta-analysis of six drug efficacy trials and one epidemiological survey. Parasitology 141: 18261840.[Crossref] [Google Scholar]
  14. Fonyad L, Krenacs T, Nagy P, Zalatnai A, Csomor J, Sapi Z, Papay J, Schonleber J, Diczhazi C, Molnar B, , 2012. Validation of diagnostic accuracy using digital slides in routine histopathology. Diagn Pathol 7: 35.[Crossref] [Google Scholar]
  15. Mejia R, Vicuna Y, Broncano N, Sandoval C, Vaca M, Chico M, Cooper PJ, Nutman TB, , 2013. A novel, multi-parallel, real-time polymerase chain reaction approach for eight gastrointestinal parasites provides improved diagnostic capabilities to resource-limited at-risk populations. Am J Trop Med Hyg 88: 10411047.[Crossref] [Google Scholar]
  16. DeClercq D, Sacko M, Behnke J, Gilbert F, Dorny P, Vercruysse J, , 1997. Failure of mebendazole in treatment of human hookworm infections in the southern region of Mali. Am J Trop Med Hyg 57: 2530. [Google Scholar]
  17. Wolstenholme AJ, Fairweather I, Prichard R, von Samson-Himmelstjerna G, Sangster NC, , 2004. Drug resistance in veterinary helminths. Trends Parasitol 20: 469476.[Crossref] [Google Scholar]
  18. Bogoch II, Andrews JR, Speich B, Utzinger J, Ame SM, Ali SM, Keiser J, , 2013. Mobile phone microscopy for the diagnosis of soil-transmitted helminth infections: a proof-of-concept study. Am J Trop Med Hyg 88: 626629.[Crossref] [Google Scholar]
  19. Sowerby SJ, Crump JA, Johnstone MC, Krause KL, Hill PC, , 2016. Smartphone microscopy of parasite eggs accumulated into a single field of view. Am J Trop Med Hyg 94: 227230.[Crossref] [Google Scholar]
  20. Slusarewicz P, Pagano S, Mills M, Popa G, Chow KM, Mendenhall M, Rodgers DW, Nielsen MK, , 2016. Automated parasite faecal egg counting using fluorescence labelling, smartphone image capture and computational image analysis. Int J Parasitol 46: 485493.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 25 Jun 2015
  • Accepted : 05 May 2016
  • Published online : 07 Sep 2016

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error