Volume 93, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



This study aimed to investigate the pharmacokinetic interactions between quinine and lopinavir boosted with ritonavir (LPV/r) in healthy Thai adults (8 males and 12 females). Period 1 (day 1): subjects received a single oral dose of 600 mg quinine sulfate. Period 2: subjects received LPV/r (400/100 mg) twice daily. Period 3: subjects received a single quinine sulfate dose plus LPV/r twice a day. Intensive blood sampling was performed during each phase. Quinine AUC (area under the plasma concentration–time curve from time 0 to 48 hours), AUC (area under the plasma concentration–time curve from time 0 to infinity), and (maximum concentration over the time-span specified), were 56%, 57%, and 47% lower, respectively, in the presence of LPV/r. 3-Hydroxyquinine AUC, AUC, and were significantly lower and the metabolite-to-parent ratio was significantly reduced. Lopinavir and ritonavir exposures were not significantly reduced with quinine coadministration, but of both drugs were significantly lower. The geometric mean ratio (GMR) and 90% CI of AUC, AUC, and for quinine, 3-hydroxyquinine, lopinavir, and ritonavir lay outside the bioequivalent range of 0.8–1.25. Drug treatments during all periods were generally well tolerated. The reduction in systemic exposure of quinine and 3-hydroxyquinine with concomitant LPV/r use raises concerns of suboptimal exposure. Studies in HIV/malaria coinfection patients are needed to determine the clinical impact to decide if any change to the quinine dose is warranted.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. World Health Organization, 2015. The Top 10 Causes of Death. Available at: http://www.who.int/mediacentre/factsheets/fs310/en/. Accessed January 6, 2015. [Google Scholar]
  2. World Health Organization, 2004. Malaria and HIV Interactions and Their Implications for Public Health Policy. Consultation on Malaria and HIV Interactions and Public Health Policy 2004. Available at: http://www.who.int/hiv/pub/prev_care/malariahiv.pdf. Accessed February 12, 2015. [Google Scholar]
  3. Laufer MK, van Oosterhout JJG, Thesing PC, Thumba F, Zijlstra EE, Graham SM, Taylor TE, Plowe CV, , 2006. Impact of HIV-associated immunosuppression on malaria infection and disease in Malawi. J Infect Dis 193: 872878.[Crossref] [Google Scholar]
  4. Hoffman I, Jere C, Taylor T, Munthali P, Dyer JR, Wirima JJ, Rogerson SJ, Kumwenda N, Eron JJ, Fiscus SA, Chakraborty H, Taha TE, Cohen MS, Molyneux ME, , 1999. The effect of Plasmodium falciparum malaria on HIV-1 RNA blood plasma concentration. AIDS 13: 487494.[Crossref] [Google Scholar]
  5. Orlov M, Vaida F, Williamson K, , 2014. Antigen-presenting phagocytic cells ingest malaria parasites and increase HIV replication in a tumor necrosis factor alpha-dependent manner. J Infect Dis 210: 15621572.[Crossref] [Google Scholar]
  6. Alemu A, Shiferaw Y, Addis Z, Mathewos B, Birhan W, , 2013. Effect of malaria on HIV/AIDS transmission and progression. Parasit Vectors 6: 1822.[Crossref] [Google Scholar]
  7. Chalwe V, Mukwamataba D, Menten J, Kamalamba J, Mulenga M, D'Alessandro U, , 2009. Increased risk for severe malaria in HIV-1-infected adults, Zambia. Emerg Infect Dis 15: 749755.[Crossref] [Google Scholar]
  8. Soyinka JO, Onyeji CO, Omoruyi SI, Owolabi AR, Sarma PV, Cook JM, , 2010. Pharmacokinetic interactions between ritonavir and quinine in healthy volunteers following concurrent administration. Br J Clin Pharmacol 69: 262270.[Crossref] [Google Scholar]
  9. Byakika-Kibwika P, Lamorde M, Okaba-Kayom V, Mayanja-Kizza H, Katabira E, Hanpithakpong W, Pakker N, Dorlo TP, Tarning J, Lindegardh N, de Vries PJ, Back D, Khoo S, Merry C, , 2012. Lopinavir/ritonavir significantly influences pharmacokinetic exposure of artemether/lumefantrine in HIV-infected Ugandan adults. J Antimicrob Chemother 67: 12171223.[Crossref] [Google Scholar]
  10. Morris CA, Lopez-Lazaro L, Jung D, Methaneethorn J, Duparc S, Borghini-Fuhrer I, Pokorny R, Shin CS, Fleckenstein L, , 2012. Drug-drug interaction analysis of pyronaridine/artesunate and ritonavir in healthy volunteers. Am J Trop Med Hyg 86: 489495.[Crossref] [Google Scholar]
  11. Nyunt MM, Lu Y, El-Gasim M, Parsons TL, Petty BG, Hendrix CW, , 2012. Effects of ritonavir-boosted lopinavir on the pharmacokinetics of quinine. Clin Pharmacol Ther 91: 889895.[Crossref] [Google Scholar]
  12. World Health Organization, 2015. Guidelines for the Treatment of Malaria, 3rd edition. Available at: http://whqlibdoc.who.int/publications/2010/9789241547925_eng.pdf. Accessed February 12, 2015. [Google Scholar]
  13. Achan J, Talisuna AO, Erhart A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D'Alessandro U, , 2011. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J 10: 1475.[Crossref] [Google Scholar]
  14. Bamford A, Turkova A, Lyall H, Foster C, Klein N, Bastiaans D, Burger D, Bernadi S, Butler K, Chiappini E, Clayden P, Della Negra M, Giacomet V, Giaquinto C, Gibb D, Galli L, Hainaut M, Koros M, Marques L, Nastouli E, Niehues T, Noguera-Julian A, Rojo P, Rudin C, , 2015. Paediatric European Network for Treatment of AIDS (PENTA) guidelines for treatment of paediatric HIV-1 infection 2015: optimizing health in preparation for adult life. HIV Med 3: 12217. [Google Scholar]
  15. Ahmed BS, Phelps BR, Reuben EB, Ferris RE, , 2014. Does a significant reduction in malaria risk make lopinavir/ritonavir-based ART cost-effective for children with HIV in co-endemic, low-resource settings? Trans R Soc Trop Med Hyg 108: 4954.[Crossref] [Google Scholar]
  16. Eagling VA, Back DJ, Barry MG, , 1997. Differential inhibition of cytochrome P450 isoforms by the protease inhibitors, ritonavir, saquinavir and indinavir. Br J Clin Pharmacol 14: 190194. [Google Scholar]
  17. Sevrioukova IF, Poulos TL, , 2010. Structure and mechanism of the complex between cytochrome P4503A4 and ritonavir. Proc Natl Acad Sci USA 107: 1842218427.[Crossref] [Google Scholar]
  18. Zhao XJ, Yokoyama H, Chiba K, Chiba K, Wanwimolruk S, Ishizaki T, , 1996. Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human live microsomes and nine recombinant human cytochromes P450. J Pharmacol Exp Ther 279: 13271334. [Google Scholar]
  19. Lakhman SS, Ma Q, Morse GD, , 2009. Pharmacogenomics of CYP3A: considerations for HIV treatment. Pharmacog 10: 13231339.[Crossref] [Google Scholar]
  20. Zhang H, Coville PF, Walker RJ, Miners JO, Birkett DJ, Wanwimolruk S, , 1997. Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine. Br J Clin Pharmacol 43: 245252.[Crossref] [Google Scholar]
  21. Wyen C, Fuhr U, Frank D, Aarnoutse RE, Klaassen T, Lazar A, Seeringer A, Doroshyenko O, Kirchheiner JC, Abdulrazik F, Schmeisser N, Lehmann C, Hein W, Schömig E, Burger DM, Fätkenheuer G, Jetter A, , 2008. Effect of an antiretroviral regimen containing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin Pharmacol Ther 84: 7582.[Crossref] [Google Scholar]
  22. Kumar GN, Jayanti VK, Johnson MK, Uchic J, Thomas S, Lee RD, Grabowski BA, Sham HL, Kempf DJ, Denissen JF, Marsh KC, Sun E, Roberts SA, , 2004. Metabolism and disposition of the HIV-1 protease inhibitor lopinavir (ABT-378) given in combination with ritonavir in rats, dogs, and humans. Pharm Res 21: 16221630.[Crossref] [Google Scholar]
  23. Schon A, del Mar Ingaramo M, Freire E, , 2003. The binding of HIV-1 protease inhibitors to human serum proteins. Biophys Chem 105: 221230.[Crossref] [Google Scholar]
  24. Fukushima K, Kobuchi S, Mizuhara K, Aoyama H, Takada K, Sugioka N, , 2013. Time-dependent interaction of ritonavir in chronic use: the power balance between inhibition and induction of P-glycoprotein and cytochrome P450 3A. J Pharm Sci 102: 20442055.[Crossref] [Google Scholar]
  25. Greman P, Parikh S, Lawrence J, Dorsey G, Rosenthat PJ, Havlir D, Charlebois E, Hanpitakpong W, Lindergardh N, Aweeka FT, , 2009. Lopinavir/ritonavir affects pharmacokinetic exposure of artemether/lumefantrine in HIV-uninfected healthy volunteers. J Acquir Immune Defic Syndr 51: 424429.[Crossref] [Google Scholar]
  26. Achan J, Kakuru A, Ikilezi G, Ruel T, Clark TD, Nsanabana C, Charlebois E, Aweeka F, Dorsey G, Rosenthal PJ, Havlir D, Kamya MR, , 2012. Antiretroviral agents and prevention of malaria in HIV-infected Ugandan children. N Engl J Med 367: 21102118.[Crossref] [Google Scholar]
  27. Karbwang J, Na Bangchang K, Molunto P, Bunnag D, , 1989. Determination of quinine and quinidine in biological fluids by high performance liquid chromatography. Southeast Asian J Trop Med Public Health 20: 6569. [Google Scholar]
  28. National Cancer Institute, 2003. The NCI Common Terminology Criteria for Adverse Events v3.0 (CTCAE). U.S. Department of Health and Human Service, 171. Available at: http://ctep.cancer.gov/protocolDevelopment/electronic_applications/docs/ctcaev3.pdf. Accessed April 2, 2012. [Google Scholar]
  29. Droste JA, Verweij-Van Wissen CP, Burger DM, , 2008. Simultaneous determination of the HIV drugs indinavir, amprenavir, saquinavir, ritonavir, lopinavir, nelfinavir, the nelfinavir hydroxymetabolite M8, and nevirapine in human plasma by reversed-phase high-performance liquid chromatography. Ther Drug Monit 25: 393399.[Crossref] [Google Scholar]
  30. DiFrancesco R, Tooley K, Rosenkranz SL, Siminski S, Taylor CR, Pande P, Morse GD, , 2013. Clinical pharmacology quality assurance for HIV and related infectious diseases research. Clin Pharmacol Ther 93: 479482.[Crossref] [Google Scholar]
  31. Gibaldi M, Perrier D, , 1982. Non-compartmental analysis based on statistical moment theory. Pharmacokinetics 2: 409417. [Google Scholar]
  32. US FDA, 2012. Guidance for Industry: Drug Interaction Studies—Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations. Rockville, MD: Food and Drug Administration, 3954. [Google Scholar]
  33. Bongiovanni M, Cicconi P, Landonio S, , 2005. Predictive factors of lopinavir/ritonavir discontinuation for drug-related toxicity: results from a cohort of 416 multi-experienced HIV-infected individuals. Int J Antimicrob Agents 26: 8891.[Crossref] [Google Scholar]
  34. Banhegyi D, Katlama C, da Cunha CA, Schneider S, Rachlis A, Workman C, De Meyer S, Vandevoorde A, Van De Casteele T, Tomaka F, , 2012. Week 96 efficacy, virology and safety of darunavir/r versus lopinavir/r in treatment-experienced patients in TITAN. Curr HIV Res 10: 171181.[Crossref] [Google Scholar]
  35. Hermes A, Squires K, Fredrick L, Martinez M, Pasley M, Trinh R, Norton M, , 2012. Meta-analysis of the safety, tolerability, and efficacy of lopinavir/ritonavir-containing antiretroviral therapy in HIV-1-infected women. HIV Clin Trials 13: 308323.[Crossref] [Google Scholar]
  36. AlKadi HO, , 2007. Antimalarial drug toxicity: a review. Chemother 53: 385391.[Crossref] [Google Scholar]
  37. Flexner C, Tierney C, Gross R, , 2010. Comparison of once-daily versus twice-daily combination antiretroviral therapy in treatment-naive patients: results of AIDS clinical trials group (ACTG) A5073, a 48-week randomized controlled trial. Clin Infect Dis 50: 10411052.[Crossref] [Google Scholar]
  38. Mirghani RA, Hellgren U, Bertilsson L, Gustafsson LL, Ericsson O, , 2003. Metabolism and elimination of quinine in healthy volunteers. Eur J Clin Pharmacol 59: 423427.[Crossref] [Google Scholar]
  39. Hull MW, Montaner JSG, , 2011. Ritonavir-boosted protease inhibitors in HIV therapy. Ann Med 43: 375388.[Crossref] [Google Scholar]
  40. Hesse LM, von Moltke LL, Shader RI, Greenblatt DJ, , 2001. Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity in vitro: potential drug interactions with bupropion. Drug Metab Dispos 29: 100102. [Google Scholar]
  41. Kharasch ED, Mitchell D, Coles R, Blanco R, , 2008. Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir. Antimicrob Agents Chemother 52: 16631669.[Crossref] [Google Scholar]
  42. Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, Eron JJ, Jr Klein CE, Rublein JC, Kashuba AD, , 2006. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr 42: 5260. [Google Scholar]
  43. Foisy MM, Yakiwchuk EM, Hughes CA, , 2008. Induction effects of ritonavir: implications for drug interactions. Ann Pharmacother 42: 10481059.[Crossref] [Google Scholar]
  44. Annaert P, Ye ZW, Stieger B, Augustijn S, , 2010. Interaction of HIV protease inhibitors with OATP1B1, 1B3, and 2B1. Xenobiotica 40: 163176.[Crossref] [Google Scholar]
  45. Lubomirov R, di Iulio J, Fayet A, Colombo S, Martinez R, Marzolini C, Furrer H, Vernazza P, Calmy A, Cavassini M, Ledergerber B, Rentsch K, Descombes P, Buclin T, Decosterd LA, Csajka C, Telenti A, Swiss HIV Cohort Study, , 2010. ADME pharmacogenetics: investigation of the pharmacokinetics of the antiretroviral agent lopinavir coformulated with ritonavir. Pharmacogenet Genomics 20: 217230. [Google Scholar]
  46. Hartkoorn RC, Kwan WS, Shallcross V, Chaikan A, Liptrott N, Egan D, Sora ES, James CE, Gibbons S, Bray PG, Back DJ, Khoo SH, Owen A, , 2010. HIV protease inhibitors are substrates for OATP1A2, OATP1B1 and OATP1B3 and lopinavir plasma concentrations are influenced by SLCO1B1 polymorphisms. Pharmacogenet Genomics 20: 112120.[Crossref] [Google Scholar]
  47. Bierman WF, Scheffer GL, Schoonderwoerd A, Jansen G, van Agtmael MA, Danner SA, Scheper RJ, , 2010. Protease inhibitors atazanavir, lopinavir and ritonavir are potent blockers, but poor substrates, of ABC transporters in a broad panel of ABC transporter-overexpressing cell lines. J Antimicrob Chemother 65: 16721680.[Crossref] [Google Scholar]
  48. Silamut K, Molunto P, Ho M, Davis TM, White NJ, , 1991. Alpha 1-acid glycoprotein (orosomucoid) and plasma protein binding of quinine in falciparum malaria. Br J Clin Pharmacol 32: 311315.[Crossref] [Google Scholar]
  49. Pussard E, Merzouk M, Barennes H, , 2007. Increased uptake of quinine into the brain by inhibition of P-glycoprotein. Eur J Pharm Sci 32: 123127.[Crossref] [Google Scholar]
  50. Silamut K, White N, Looareesuwan S, Warrell DA, , 1985. Binding of quinine to plasma proteins in falciparum malaria. Am J Trop Med Hyg 34: 681686. [Google Scholar]
  51. Nsanzabana C, Rosenthal P, , 2011. In vitro activity of antiretroviral drugs against Plasmodium falciparum . Antimicrob Agents Chemother 55: 50735077.[Crossref] [Google Scholar]
  52. Martin R, Butterworth A, Gardiner D, Kirk K, McCarthy JS, Skinner-Adams TS, , 2012. Saquinavir inhibits the malaria parasite's chloroquine resistance transporter. Antimicrob Agents Chemother 56: 22832289.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 19 Jun 2015
  • Accepted : 16 Aug 2015
  • Published online : 09 Dec 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error