Volume 93, Issue 6
  • ISSN: 0002-9637
  • E-ISSN: 1476-1645



During a chikungunya fever outbreak in late 2014 in Chiapas, Mexico, entomovirological surveillance was performed to incriminate the vector(s). In neighborhoods, 75 households with suspected cases were sampled for mosquitoes, of which 80% (60) harbored and 2.7% (2) . A total of 1,170 and three was collected and 81 pools were generated. Although none of the pools were chikungunya virus (CHIKV)–positive, 18 pools (22.8%) contained CHIKV, yielding an infection rate of 32.3/1,000 mosquitoes. A lack of herd immunity in conjunction with high mosquito populations, poor vector control services in this region, and targeted collections in locations of human cases may explain the high infection rate in this vector. Consistent with predictions from experimental studies, appears to be the principal vector of CHIKV in southern Mexico, while the role of remains unknown.


Article metrics loading...

The graphs shown below represent data from March 2017
Loading full text...

Full text loading...



  1. Weaver SC, Frey TK, Huang HV, Kinney RM, Rice CM, Roehrig JT, Shope RE, Strauss EG, Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA, , 2005. Togaviridae. , eds. Eighth Report of the International Committee on Taxonomy of Viruses. London, United Kingdom: Elsevier Academic Press, 9991008. [Google Scholar]
  2. Caglioti C, Lalle E, Castilletti C, Carletti F, Capobianchi MR, Bordi L, , 2013. Chikungunya virus infection: an overview. New Microbiol 36 211227. [Google Scholar]
  3. Lindsey NP, Prince HE, Kosoy O, Laven J, Messenger S, Staples JE, Fischer M, , 2015. Chikungunya virus infections among travelers—United States, 2010–2013. Am J Trop Med Hyg 92: 8287.[Crossref] [Google Scholar]
  4. Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X, , 2014. Chikungunya in the Americas. Lancet 383: 514.[Crossref] [Google Scholar]
  5. Weaver SC, Lecuit M, , 2015. Chikungunya virus and the global spread of a mosquito-borne disease. N Engl J Med 372: 12311239.[Crossref] [Google Scholar]
  6. Vega-Rúa A, Zouache K, Girod R, Failloux A-B, Lourenço-de-Oliveira R, , 2014. High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of chikungunya virus. J Virol 88: 62946306.[Crossref] [Google Scholar]
  7. Centro Nacional de Programas Preventivos y Control de Enfermedades, 2014. Declaratoria de Emergencia Epidemiológica EE-2-2014 para el estado de Chiapas ante el primer caso de transmisión autóctona de enfermedad por virus de Chikungunya. Available at: http://www.cenaprece.salud.gob.mx/programas/interior/emergencias/descargas/pdf/Declaratoria_Emergencia_Chiapas_Chikungunya.pdf. Accessed April 17, 2015. [Google Scholar]
  8. Kautz T, Diaz-Gonzalez EE, Erasmus J, Malo-Garcia IR, Langsjoen R, Patterson E, Auguste D, Forrester N, Sanchez-Casas RM, Hernandez-Avila M, Alpuche-Aranda C, Weaver S, Fernandez-Salas I, , 2015. Chikungunya virus identified as the etiological agent of an outbreak of febrile illness in Chiapas, Mexico, 2014. Emerg Infect Dis 21: doi: 10.3201/eid2111.150546.[Crossref] [Google Scholar]
  9. Insituto Nacional para el Federalismo y el Desarrollo Municipal, 2010. Suchiate. Enciclopedia de Los Municipios y Delegaciones de México. Available at: http://www.inafed.gob.mx/work/enciclopedia/EMM07chiapas/municipios/07087a.html. Accessed April 17, 2015. [Google Scholar]
  10. ECDC, 2007. Mission Report Chikungunya in Italy. Available at: http://ecdc.europa.eu/en/healthtopics/Documents/0709_Chikungunya_fever_Mission_report.pdf. [Google Scholar]
  11. Powers AM, Roehrig JT, Stephenson JR, Warnes A, , 2011. Alphavirus. , eds. Diagnostic Virology Protocols, New Delhi, India: Humana Press, 1738. [Google Scholar]
  12. Edgar RC, , 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5: 113.[Crossref] [Google Scholar]
  13. Swofford DL, , 1998. Phylogenetic Analysis using Parsimony (PAUP), Version 4. Sunderland, MA: Sinauer Associates. [Google Scholar]
  14. Posada D, Crandall KA, , 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817818.[Crossref] [Google Scholar]
  15. Biggerstaff B, , 2015. PooledInfRate 4.0. Centers for Disease Control and Prevention. Available at: http://www.cdc.gov/westnile/resourcepages/mosqsurvsoft.html. Accessed August 10, 2015. [Google Scholar]
  16. Braks MAH, Honório NA, Lourenço-De-Oliveira R, Juliano SA, Lounibos LP, , 2003. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J Med Entomol 40: 785794.[Crossref] [Google Scholar]
  17. Sang RC, Ahmed O, Faye O, Kelly CLH, Yahaya AA, Mmadi I, Toilibou A, Sergon K, Brown J, Agata N, Yakouide A, Ball MD, Breiman RF, Miller BR, Powers AM, , 2008. Entomologic investigations of a chikungunya virus epidemic in the Union of the Comoros, 2005. Am J Trop Med Hyg 78: 7782. [Google Scholar]
  18. Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, Huang J, Weaver SC, , 2011. Chikungunya virus emergence is constrained in Asia by lineage-specific adaptive landscapes. Proc Natl Acad Sci USA 108: 78727877.[Crossref] [Google Scholar]
  19. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S, , 2007. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3: e201.[Crossref] [Google Scholar]
  20. Tsetsarkin KA, Chen R, Yun R, Rossi SL, Plante KS, Guerbois M, Forrester N, Perng GC, Sreekumar E, Leal G, Huang J, Mukhopadhyay S, Weaver SC, , 2014. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun 5: 4084.[Crossref] [Google Scholar]
  21. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, Huerre M, Thiria J, Dehecq J-S, Fontenille D, Schuffenecker I, Despres P, Failloux A-B, , 2007. Two chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus . PLoS One 2: e1168.[Crossref] [Google Scholar]
  22. Tsetsarkin KA, Weaver SC, , 2011. Sequential adaptive mutations enhance efficient vector switching by chikungunya virus and its epidemic emergence. PLoS Pathog 7: e1002412.[Crossref] [Google Scholar]

Data & Media loading...

  • Received : 18 Jun 2015
  • Accepted : 27 Aug 2015
  • Published online : 09 Dec 2015

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error